Browse > Article
http://dx.doi.org/10.22156/CS4SMB.2018.8.3.063

An Efficient cryptography for healthcare data in the cloud environment  

Cho, Sung-Nam (Korea Institute of Science and Technology Information)
Jeong, Yoon-Su (Dept. of information Communication Convergence Engineering, Mokwon University)
Oh, ChungShick (Korea Institute of Science and Technology Information)
Publication Information
Journal of Convergence for Information Technology / v.8, no.3, 2018 , pp. 63-69 More about this Journal
Abstract
Recently, healthcare services are using cloud services to efficiently manage users' healthcare data. However, research to ensure the stability of the user's healthcare data processed in the cloud environment is insufficient. In this paper, we propose a partial random encryption scheme that efficiently encrypts healthcare data in a cloud environment. The proposed scheme generates two random keys (p, q) generated by the user to optimize for the hospital medical service and reflects them in public key and private key generation. The random key used in the proposed scheme improves the efficiency of user 's healthcare data processing by encrypting only part of the data without encrypting the whole data. As a result of the performance evaluation, the proposed method showed 21.6% lower than the existing method and 18.5% improved the user healthcare data processing time in the hospital.
Keywords
Cloud; Healthcare; Encryption; Authentication; Key Generation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. H. Weber. (2010). Internet of Things: New Security and Privacy Challenges. Computer Law & Security Review, 26(1), 23-30. DOI : 10.1016/j.clsr.2009.11.008   DOI
2 S. C. Choi, M. W. Ryu, M, Jin & J. H. Kim. (2014). Internet of Things platform and service trends. Information and Communications Magazine(Information and Communication), 31(4), 20-27.
3 S. Haller, S. Karnouskos & C. Schroth. (2009). The Internet of Things in an Enterprise Context. Future Internet-FIS 2008 Lecture Notes in Computer Science, 5468, 14-28. DOI : 10.1007/978-3-642-00985-3_2   DOI
4 S. Raza, H. Shafagh, K. Hewage, R. Hummen & T. Voigt. (2013). Lithe: Lightweight Secure CoAP for the Internet of Things. IEEE Sensors Journal, 13(10), 1-1. DOI : 10.1109/jsen.2013.2277656   DOI
5 Y. S. Jeong & S. H. Lee. (2012). U-Healthcare user's privacy protection protocol with Implantable medical Device of State Information. Journal of the Korean Institue of Communicaitons and Information Sciences, 37(4), 277-353. DOI : 10.7840/kics.2012.37c.4.297   DOI
6 P. Phunchongharn, D. Niyato, E. Hossain & S. Camorlinga. (2009). An EMI-Aware Prioritized Wireless Access Scheme for e-Health Application in Hospital Environments. IEEE transactions on information technology in biomedicine, 14(5), 1247-1258. DOI : 10.1109/titb.2010.2047507   DOI
7 H. B. Kim, Y. J. Jeon & S. J. Kim. (2011). Study on security management in cloud computing environment. Kongju University KNU Management Consulting Institute, Management Consulting Review, 2(1), 127-144.
8 P. Phunchongharn, E. Hossain & S. Camorlinga. (2011). Electromagnetic Interference-Aware Transmission Scheduling and Power Control for Dynamic Wireless Access in Hospital Environments. IEEE Transactions on Information Technology in Biomedicine, 15(6), 890-899. DOI : 10.1109/titb.2011.2164258   DOI
9 Q. Shen, X. Liang, X. Shen, X. Lin & H. Y. Luo. (2004). Exploiting Geo-Distributed Clouds for a E-health Monitoring System With Minimum Service Delay and Privacy Preservation. IEEE Journal of Biomedical and Health Informatics, 18(2), 430-439. DOI : 10.1109/jbhi.2013.2292829   DOI
10 X. Shen. (2012). Emerging technologies for e-healthcare. IEEE Journals & Managines Network, 26(5), 2-3.   DOI
11 H. S. Kim & C. S. Park. (2010). Cloud computing and personal authentication services. Review of KIISC , 20(2), 11-19.
12 K. H. Lee, H. S. Choi & Y. D. Chung. (2011). Massive Data Processing and Management in Cloud Computing: A Survey. Journal of KIISE, 38(2), 104-125.
13 Y. Yu, Y. Mu, W. Susilo, Y. Sun & Y Ji. (2012). Provably secure proxy signature scheme from factorization. Mathematical and Computer Modelling, 1160-1168.
14 Z. A. Khattak, S. Sulaiman & J. A. Manan. (2010). A study on threat model for federated identities in federated identity management system, Proceedings of the 2010 International Symposium in Information Technology(ITSim), 2, 618-623. DOI : 10.1109/itsim.2010.5561611   DOI
15 H. Gao, J. Yan & Y. Mu. (2010). Dynamic Trust Model for Federated Identity Management. Proceedings of the 4th International Conference on Network and System Security(NSS), 55-61. DOI : 10.1109/nss.2010.40   DOI
16 Y. Zhou, Z. Cao & R. Lu. (2005). Provably secure proxy-protected signature schemes based on factoring. Appl. Math. Comput., 164(1), 83-98. DOI : 10.1016/j.amc.2004.04.032   DOI
17 M. Mambo, K. Usuda & E. Okamoto. (1996). Proxy signatures for delegating signing operation. Proceedings of the Third ACM Conference on Computer and Communications Security, 48-57. DOI : 10.1145/238168.238185   DOI