• Title/Summary/Keyword: prion binding protein

Search Result 5, Processing Time 0.023 seconds

Expression of galectin-3 in rat brain (랫트 뇌에서의 galectin-3의 검출)

  • Lee, Yoo-Kyoung;Kang, Hae Eun;Woo, Hee Jong
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.1
    • /
    • pp.83-88
    • /
    • 2004
  • Galectin family, endogenous ${\beta}$-galactoside-binding animal lectins, is known for the role in cell differentiation, morphogenesis, apoptosis and tumorigenesis. Galectin-3, one of family member, has been studied for its role in cell differentiation and tumor metastasis, and for its expression on epithelial cells of colon and mast cells but not in brain. Several reports, however, suggest its expression in brain including as a prion binding protein. In this report we explored possibility of galectin-3 expression in brain tissue. With Western blot and RT-PCR with rat brain tissues, we could detect galectin-3 that was not shown by conventional immunohistochemistry. Our results indicated galectin-3 was expressed in brain, and substantiate the previous report on galecin-3 as a prion-related protein in brain.

Disulfide Bond as a Structural Determinant of Prion Protein Membrane Insertion

  • Shin, Jae Yoon;Shin, Jae Il;Kim, Jun Seob;Yang, Yoo Soo;Shin, Yeon-Kyun;Kim, Kyeong Kyu;Lee, Sangho;Kweon, Dae-Hyuk
    • Molecules and Cells
    • /
    • v.27 no.6
    • /
    • pp.673-680
    • /
    • 2009
  • Conversion of the normal soluble form of prion protein, PrP ($PrP^C$), to proteinase K-resistant form ($PrP^{Sc}$) is a common molecular etiology of prion diseases. Proteinase K-resistance is attributed to a drastic conformational change from ${\alpha}$-helix to ${\beta}$-sheet and subsequent fibril formation. Compelling evidence suggests that membranes play a role in the conformational conversion of PrP. However, biophysical mechanisms underlying the conformational changes of PrP and membrane binding are still elusive. Recently, we demonstrated that the putative transmembrane domain (TMD; residues 111-135) of Syrian hamster PrP penetrates into the membrane upon the reduction of the conserved disulfide bond of PrP. To understand the mechanism underlying the membrane insertion of the TMD, here we explored changes in conformation and membrane binding abilities of PrP using wild type and cysteine-free mutant. We show that the reduction of the disulfide bond of PrP removes motional restriction of the TMD, which might, in turn, expose the TMD into solvent. The released TMD then penetrates into the membrane. We suggest that the disulfide bond regulates the membrane binding mode of PrP by controlling the motional freedom of the TMD.

Biochemical Analysis of Interaction between Kringle Domains of Plasminogen and Prion Proteins with Q167R Mutation

  • Lee, Jeongmin;Lee, Byoung Woo;Kang, Hae-Eun;Choe, Kevine K.;Kwon, Moosik;Ryou, Chongsuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.5
    • /
    • pp.1023-1031
    • /
    • 2017
  • The conformational change of cellular prion protein ($PrP^C$) to its misfolded counterpart, termed $PrP^{Sc}$, is mediated by a hypothesized cellular cofactor. This cofactor is believed to interact directly with certain amino acid residues of $PrP^C$. When these are mutated into cationic amino acid residues, $PrP^{Sc}$ formation and prion replication halt in a dominant negative (DN) manner, presumably due to strong binding of the cofactor to mutated $PrP^C$, designated as DN PrP mutants. Previous studies demonstrated that plasminogen and its kringle domains bind to PrP and accelerate $PrP^{Sc}$ generation. In this study, in vitro binding analysis of kringle domains of plasminogen to Q167R DN mutant PrP (PrPQ167R) was performed in parallel with the wild type (WT) and Q218K DN mutant PrP (PrPQ218K). The binding affinity of PrPQ167R was higher than that of WT PrP, but lower than that of PrPQ218K. Scatchard analysis further indicated that, like PrPQ218K and WT PrP, PrPQ167R interaction with plasminogen occurred at multiple sites, suggesting cooperativity in this interaction. Competitive binding analysis using $\small{L}$-lysine or $\small{L}$-arginine confirmed the increase of the specificity and binding affinity of the interaction as PrP acquired DN mutations. Circular dichroism spectroscopy demonstrated that the recombinant PrPs used in this study retained the ${\alpha}$-helix-rich structure. The ${\alpha}$-helix unfolding study revealed similar conformational stability for WT and DN-mutated PrPs. This study provides an additional piece of biochemical evidence concerning the interaction of plasminogen with DN mutant PrPs.

Structural Analysis of [Cu(II)-amyloidogenic peptide] Complexes

  • Cha, Eugene;Seo, Jae-Hong;Kim, Ho-Tae
    • Mass Spectrometry Letters
    • /
    • v.9 no.1
    • /
    • pp.17-23
    • /
    • 2018
  • Studies on the interactions of amyloidogenic proteins with trace metals, such as copper, have indicated that the metal ions perform a critical function in the early oligomerization process. Herein, we investigate the effects of Cu(II) ions on the active sequence regions of amyloidogenic proteins using electrospray ionization mass spectrometry (ESI-MS) and collision induced dissociation tandem MS (CID-MS/MS). We chose three amyloidogenic peptides NNQQNY, LYQLEN, and VQIVYK from yeast prion like protein Sup35, insulin chain A, and tau protein, respectively. [Cu-peptide] complexes for all three peptides were observed in the mass spectra. The mass spectra also show that increasing Cu(II) concentrations decrease the population of existing peptide oligomers. The tandem mass spectrum of NNQQNY shows preferential binding for the N-terminal region. All three peptides are likely to appear to be in a Cu-monomer-monomer (Cu-M-M) structure instead of a monomer-Cu-monomer (M-Cu-M) structure.

New insight into transglutaminase 2 and link to neurodegenerative diseases

  • Min, Boram;Chung, Kwang Chul
    • BMB Reports
    • /
    • v.51 no.1
    • /
    • pp.5-13
    • /
    • 2018
  • Formation of toxic protein aggregates is a common feature and mainly contributes to the pathogenesis of neurodegenerative diseases (NDDs), which include amyotrophic lateral sclerosis (ALS), Alzheimer's, Parkinson's, Huntington's, and prion diseases. The transglutaminase 2 (TG2) gene encodes a multifunctional enzyme, displaying four types of activity, such as transamidation, GTPase, protein disulfide isomerase, and protein kinase activities. Many studies demonstrated that the calcium-dependent transamidation activity of TG2 affects the formation of insoluble and toxic amyloid aggregates that mainly consisted of NDD-related proteins. So far, many important and NDD-related substrates of TG2 have been identified, including $amlyoid-{\beta}$, tau, ${\alpha}-synuclein$, mutant huntingtin, and ALS-linked trans-activation response (TAR) DNA-binding protein 43. Recently, the formation of toxic inclusions mediated by several TG2 substrates were efficiently inhibited by TG2 inhibitors. Therefore, the development of highly specific TG2 inhibitors would be an important tool in alleviating the progression of TG2-related brain disorders. In this review, the authors discuss recent advances in TG2 biochemistry, several mechanisms of molecular regulation and pleotropic signaling functions, and the presumed role of TG2 in the progression of many NDDs.