• Title/Summary/Keyword: printing-ink

Search Result 592, Processing Time 0.019 seconds

A Study on the Change of Materials and Fabrication Techniques of Stone Figures in Royal Tombs of the Joseon Period - Focusing on Shindobi, Pyo-Seok, and Sang-Seok - (조선시대 왕릉 석물의 재료와 제작 방법 변화에 관한 연구 - 신도비와 표석, 상석을 중심으로 -)

  • Cha, Moonsung
    • Korean Journal of Heritage: History & Science
    • /
    • v.52 no.4
    • /
    • pp.56-77
    • /
    • 2019
  • Bi-Seok is a treasure trove of funeral rites and an important cultural asset that can shed light on the historical and social history of calligraphy, but research of the topic is still insignificant. In particular, research on the production method of Bi-Seok remains an unproven field. The production of Bi-Seok can be roughly divided into ma-jeong (refining stone), sculpture, and the Buk-chil (process of engraving letters) process. This article reveals some facts: First, performing ma-jeong to the Sang-Seok, Honyu-Seok, Bi-seok, which are known to be God's things. This process is needed because of the change in the perception of the Honyu-Seok due to the settlement and propagation of Confucian ceremonial rituals in the times of hardship in 1592 and 1636. As the crafting process of ma-jeong did not remain concrete, it was only possible to examine the manufacturing process of Bi-Seok through its materials and tools. Second, the rapid proliferation of Oh-Seok and Sa-jeo-chwi-yong (purchase of things made by private citizens) in the Yeongjo era has great importance in social and cultural history. When the Gang-Hwa-Seok of the commodity were exhausted, the Oh-Seok that was used by Sadebu (upper civil class) were used in the tomb of Jangneung, which made Oh-Seok popular among people. In particular, the use of Oh-Seok and the Ma-Jeong process could minimize chemical and physical damage. Third, the writing method of the Bi-seok is Buk-chil. After Buk-Chil of Song Si-Yeol was used on King Hyojong's tomb, the Buk-Chil process ( printing the letters on the back of the stone and rubbing them to make letters) became the most popular method in Korea and among other East Asian countries, and the fact that it was institutionalized to this scale was quite impressive. Buk-Chil became more sophisticated by using red ink rather than black ink due to the black color that results from Oh-Seok. Fourth, the writing method changes in the late Joseon Dynasty. Until the time of Yeongjo's regime, when inscribing, the depth of the angle was based on the thickness of the stroke, thus representing the shade. This technique, of course, did not occur at every Pyo-Seok or Shindobi, but was maintained by outstanding artisans belonging to government agencies. Therefore, in order to manufacture Bi-Seok, Suk-seok, YeonJeong, Ma-jeong, Jeong-Gan, ChodoSeoIp, Jung-Cho, Ip-gak, Gyo-Jeong, and Jang-Hwang, a process was needed to make one final product. Although all of these methods serve the same purpose of paying respects and propagandizing the great work of deceased persons, through this analysis, it was possible to see the whole process of Pyo-Seok based upon the division of techniques and the collaboration of the craftsmen.

The Monitoring on Plasticizers and Heavy Metals in Teabags (침출용 티백 포장재의 안전성에 관한 연구)

  • Eom, Mi-Ok;Kwak, In-Shin;Kang, Kil-Jin;Jeon, Dae-Hoon;Kim, Hyung-Il;Sung, Jun-Hyun;Choi, Hee-Jung;Lee, Young-Ja
    • Journal of Food Hygiene and Safety
    • /
    • v.21 no.4
    • /
    • pp.231-237
    • /
    • 2006
  • Nowadays the teabag is worldwide used for various products including green tea, tea, coffee, etc. since it is convenient for use. In case of outer packaging printed, however, there is a possibility that the plasticizers which is used for improvement in adhesiveness of printing ink may shift to inner tea bag. In this study, in order to monitor residual levels of plasticizers in teabags, we have established the simultaneous analysis method of 9 phthalates and 7 adipates plasticizers using gas chromatography (GC). These compounds were also confirmed using gas chromatography-mass spectrometry (GC-MSD). The recoveries of plasticizers analyzed by GC ranged from 82.7% to 104.6% with coefficient of variation of $0.6\sim2.7%$ and the correlation coefficients of each plasticizer was $0.9991\sim0.9999$. Therefore this simultaneous analysis method was showed excellent reproducibility and linearity. And limit of detection (LOD) and limit of quantitation (LOQ) on individual plasticizer were $0.1\sim3.5\;ppm\;and\;0.3\sim11.5\;ppm$ respectively. When 143 commercial products of teabag were monitored, no plasticizers analysed were detected in filter of teabag products. The migration into $95^{\circ}C$ water as food was also examined and the 16 plasticizers are not detected. In addition we carried out analysis of heavy metals, lead (Pb), cadmium (Cd), arsenic (As) and aluminum (Al) in teabag filters using ICP/AES. $Trace\sim23{\mu}g$ Pb per teabag and $0.6\sim1718{\mu}g$ Al per teabag were detected in materials of samples and Cd and As are detected less than LOQ (0.05 ppm). The migration levels of Pb and Al from teabag filter to $95^{\circ}C$ water were upto $11.5{\mu}g\;and\;20.8{\mu}g$ per teabag, respectively and Cd and As were not detected in exudate water of all samples. Collectively, these results suggest that there is no safety concern from using teabag filter.