• Title/Summary/Keyword: printed electronics

Search Result 625, Processing Time 0.03 seconds

Development of Process and Equipment for Roll-to-Roll convergence printing technology

  • Kim, Dong-Su;Bae, Seong-U;Kim, Chung-Hwan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.19.1-19.1
    • /
    • 2010
  • The process of manufacturing printed electronics using printing technology is attracting attention because its process cost is lower than that of the conventional semiconductor process. This technology, which offers both a lower cost and higher productivity, can be applied in the production of organic TFT (thin film transistor), solar cell, RFID(radio frequency identification) tag, printed battery, E-paper, touch screen panel, black matrix for LCD(liquid crystal display), flexible display, and so forth. In general, in order to implement printed electronics, narrow width and gap printing, registration of multi-layer printing by several printing units, and printing accuracy of under $20\;{\mu}m$ are all required. These electronic products require high precision to the degree of tens of microns - in a large area with flexible material, and mass productivity at low cost. As such, the roll-to-roll printing process is attracting attention as a mass production system for these printed electronic devices. For the commercialization of this process, two basic electronic ink technologies, such as conductive ink and polymers, and printing equipment have to be developed. Therefore, this paper addressed basis design and test to develop fine patterning equipment employing the roll-to-roll printing equipment and electronic ink.

  • PDF

Post-Treatment of Printed Carbon Nanotubes for Vertical Alignment

  • Kim, Yong-C.;Sohn, K.H.;Cho, Y.M.;Yoo, Eun-H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.692-695
    • /
    • 2004
  • Fabrication of photosensitive carbon nanotubes paste and its post-treatment has been developed for high resolution with good electron emission uniformity. We report novel post-treatment techniques including rubber-rolling and multiple field emission cycling from which we could improve the field emission properties of printed carbon nanotubes. These techniques would be easily applicable to large area field emission display using paste of carbon nanotubes

  • PDF

Analysis on Aerodynamic Characteristics of Drying Process in R2R Printed Electronics (롤투롤 전자인쇄 건조공정의 공기역학적 특성분석)

  • Seo, Yang-Ho;Chang, Young-Bae;Kim, Chang-Wan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.95-103
    • /
    • 2010
  • Roll to Roll (R2R) is one of the most promising production technologies in the printed electronics such as OLEDs, e-paper, backplanes, RFID because this technology can save production cost and increase production speed. Printed electronics includes various processes such as printing, drying, winding, unwinding, and so on. In printed electronics R2R system, air-flotation oven is employed for drying process. Therefore, it is essential to introduce efficient and fast drying process when printing is finished. This paper considers the analysis of drying process in R2R that involves hot air flow. Air-flotation oven consists of non-contact supports and drying of coated web materials such as plastic films and paper. In this paper, experimental results and numerical analysis of pressure-pad air bar are investigated. The aerodynamic characteristics of pressure-pad air bar are numerically calculated using computational fluid dynamics (CFD) approach. Then the measured values of the aerodynamic forces for air bars are compared with those of CFD analysis.

Printed Organic One-Time Programmable ROM Array Using Anti-fuse Capacitor

  • Yang, Byung-Do;Oh, Jae-Mun;Kang, Hyeong-Ju;Jung, Soon-Won;Yang, Yong Suk;You, In-Kyu
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.594-602
    • /
    • 2013
  • This paper proposes printed organic one-time programmable read-only memory (PROM). The organic PROM cell consists of a capacitor and an organic p-type metal-oxide semiconductor (PMOS) transistor. Initially, all organic PROM cells with unbroken capacitors store "0." Some organic PROM cells are programmed to "1" by electrically breaking each capacitor with a high voltage. After the capacitor breaking, the current flowing through the PROM cell significantly increases. The memory data is read out by sensing the current in the PROM cell. 16-bit organic PROM cell arrays are fabricated with the printed organic PMOS transistor and capacitor process. The organic PROM cells are programmed with -50 V, and they are read out with -20 V. The area of the 16-bit organic PROM array is 70.6 $mm^2$.