• Title/Summary/Keyword: printed density

Search Result 171, Processing Time 0.034 seconds

BST Thin Film Multi-Layer Capacitors

  • Choi, Woo Sung;Kang, Min-Gyu;Ju, Byeong-Kwon;Yoon, Seok-Jin;Kang, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.319-319
    • /
    • 2013
  • Even though the fabrication methods of metal oxide based thin film capacitor have been well established such as RF sputtering, Sol-gel, metal organic chemical vapor deposition (MOCVD), ion beam assisted deposition (IBAD) and pulsed laser deposition (PLD), an applicable capacitor of printed circuit board (PCB) has not realized yet by these methods. Barium Strontium Titanate (BST) and other high-k ceramic oxides are important materials used in integrated passive devices, multi-chip modules (MCM), high-density interconnect, and chip-scale packaging. Thin film multi-layer technology is strongly demanded for having high capacitance (120 nF/$mm^2$). In this study, we suggest novel multi-layer thin film capacitor design and fabrication technology utilized by plasma assisted deposition and photolithography processes. Ba0.6Sr0.4TiO3 (BST) was used for the dielectric material since it has high dielectric constant and low dielectric loss. 5-layered BST and Pt thin films with multi-layer sandwich structures were formed on Pt/Ti/$SiO_2$/Si substrate by RF-magnetron sputtering and DC-sputtering. Pt electrodes and BST layers were patterned to reveal internal electrodes by photolithography. SiO2 passivation layer was deposited by plasma-enhanced chemical vapor deposition (PE-CVD). The passivation layer plays an important role to prevent short connection between the electrodes. It was patterned to create holes for the connection between internal electrodes and external electrodes by reactive-ion etching (RIE). External contact pads were formed by Pt electrodes. The microstructure and dielectric characteristics of the capacitors were investigated by scanning electron microscopy (SEM) and impedance analyzer, respectively. In conclusion, the 0402 sized thin film multi-layer capacitors have been demonstrated, which have capacitance of 10 nF. They are expected to be used for decoupling purpose and have been fabricated with high yield.

  • PDF

FPCB Cutting Process using ns and ps Laser (나노초 및 피코초 레이저를 이용한 FPCB의 절단특성 분석)

  • Shin, Dong-Sig;Lee, Jae-Hoon;Sohn, Hyon-Kee;Paik, Byoung-Man
    • Laser Solutions
    • /
    • v.11 no.4
    • /
    • pp.29-34
    • /
    • 2008
  • Ultraviolet laser micromachining has increasingly been applied to the electronics industry where precision machining of high-density, multi-layer, and multi material components is in a strong demand. Due to the ever-decreasing size of electronic products such as cellular phones, MP3 players, digital cameras, etc., flexible printed circuit board (FPCB), multi-layered with polymers and metals, tends to be thicker. In present, multi-layered FPCBs are being mechanically cut with a punching die. The mechanical cutting of FPCBs causes such defects as burr on layer edges, cracks in terminals, delamination and chipping of layers. In this study, the laser cutting mechanism of FPCB was examined to solve problems related to surface debris and short-circuiting that can be caused by the photo-thermal effect. The laser cutting of PI and FCCL, which are base materials of FPCB, was carried out using a pico-second laser(355nm, 532nm) and nano-second UV laser with adjusting variables such as the average/peak power, scanning speed, cycles, gas and materials. Points which special attention should be paid are that a fast scanning speed, low repetition rate and high peak power are required for precision machining.

  • PDF

Comparison of Physical Properties of CFC Alternative Cleaning Solvents (CFC 대체세정제의 물성 비교)

  • Row, Kyung Ho;Lee, Youn Yong
    • Analytical Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.65-75
    • /
    • 1993
  • A number of alternative cleaning solvents to CFC 113 which was identified as a ozone-depleting meterial were collected to measure their experimental physecal properties of density, surface tension, Refractive Index, boiling point, pH, viscosity, flash point, and soltbility. They might be classified as aqueous, simi-aqeous, alcohol ketone, and halogen cleaning solvents. The solubilities of abietic acid, a major component of flux used in PCB (Printed Circuit Board) of the electronic indystry, into the cleaning solvents including CFC 113 were determined for comparison. The assorted cleaning solvents have their own advantages and disadvantages. Therefore a end-user carefully needs to choose the best-fit cleaning solvent after the safety, stability, and economics as well as the effectiveness by physical properties of the alternative cleaning solvents are integratedly considered.

  • PDF

Effect of TiO2 Coating Thickness on Photovoltaic Performance of Dye-sensitized Solar Cells Prepared by Screen-printing Using TiO2 Powders

  • Lee, Deuk Yong;Cho, Hun;Kang, Daejun;Kang, Jong-Ho;Lee, Myung-Hyun;Kim, Bae-Yeon;Cho, Nam-Ihn
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.362-366
    • /
    • 2014
  • Dye-sensitized solar cells (DSSCs) were synthesized using a $0.25cm^2$ area of a $TiO_2$ nanoparticle layer as the electrode and platinum (Pt) as the counter electrode. The $TiO_2$ nanoparticle layers (12 to 22 ${\mu}m$) were screen-printed on fluorine-doped tin oxide glass. Glancing angle X-ray diffraction results indicated that the $TiO_2$ layer is composed of pure anatase with no traces of rutile $TiO_2$. The Pt counter electrode and the ruthenium dye anchored $TiO_2$ electrode were then assembled. The best photovoltaic performance of DSSC, which consists of a $18{\mu}m$ thick $TiO_2$ nanoparticle layer, was observed at a short circuit current density ($J_{sc}$) of $14.68mA{\cdot}cm^{-2}$, an open circuit voltage ($V_{oc}$) of 0.72V, a fill factor (FF) of 63.0%, and an energy conversion efficiency (${\eta}$) of 6.65%. It can be concluded that the electrode thickness is attributed to the energy conversion efficiency of DSSCs.

Fabrication of Solid Oxide Fuel Cells via Physical Vapor Deposition with Electron Beam: II. Unit Cell Performance (전자빔 물리증착을 이용한 고체 산화물 연료전지의 제조: II. 단전지 성능)

  • Kim, Hyoung-Chul;Park, Jong-Ku;Jung, Hwa-Young;Son, Ji-Won;Kim, Joo-Sun;Lee, Hae-Weon;Lee, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.5 s.288
    • /
    • pp.299-303
    • /
    • 2006
  • In this paper, anode supported SOFC with columnar structured YSZ electrolyte was fabricated via Electron Beam Physical Vapor Deposition (EBPVD) method. Liquid condensation process was employed for the preparation of NiO-YSZ substrate and the high power electron beam deposition method was used for the deposition of YSZ electrolyte film. Double layered cathode with LSM-YSZ and LSM was printed on electrolyte via screen-printing method and fired at $1150^{\circ}C$ in air atmosphere for 3 h. The electrochemical performance and the long-term stability of $5{\times}5cm^2$ single cell were investigated with DC current-voltage characteristics and AC-impedance spectroscopy. According to the investigation, $5{\times}5cm^2$ sized unit cell showed the maximum power density of around $0.76W/cm^2$ at $800^{\circ}C$ and maintained the stable performance over 400 h.

Polarization Behaviors of SnCu Pb-Free Solder Depending on the P, Ni, Addition (SnCu계 무연솔더의 Ni, P 첨가에 따른 분극거동)

  • Hong Won Sik;Kim Whee Sung;Park Sung Hun;Kim Kwang-Bae
    • Korean Journal of Materials Research
    • /
    • v.15 no.8
    • /
    • pp.528-535
    • /
    • 2005
  • It is inclined to increase that use of hazardous substances such as lead(Pb), mercury (Hg), cadmium(Cd) etc. are prohibited in the electronics according to environmental friendly policies of an advanced nation for protecting environment of earth. As this reasons, many researches for ensuring the reliability were proceeding in Pb free soldering process. n the flux remains on the PCB(printed circuit board) in the soldering process or the electronics exposed to corrosive environment, it becomes the reasons of breakdown or malfunction of the electronics caused by corrosion. Therefore in this studies we researched the polarization and Tafel properties of Sn40Pb and SnCu system solders based on the electrochemical theory. The experimental polarization curves were measured in distilled ionized water and 1 mole $3.5 wt\%$ NaCl electrolyte of $40^{\circ}C$, pH 7.5. Ag/AgCl and graphite were utilized by reference and counter electrodes, respectively. To observe the electrochemical reaction, polarization test was conducted from -250mV to +250mV. From the polarization curves composed of anodic and cathodic curves, we obtained Tafel slop, reversible electrode potential(Ecorr) and exchange current density((cow). In these results, we compared the corrosion rate of SnPb and SnCu solders.

Fabrication of 365 nm Wavelength High Transmittance Silicone Resin TIR Lens and High Directivity Light Source Module for Exposure System (365 nm 파장대역 고투과율 실리콘 수지 TIR 렌즈 및 고지향성 노광기 광원모듈 제작)

  • Sung, Jun Ho;Yu, Soon Jae;Anil, Kawan;Jung, Mee Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.4
    • /
    • pp.267-271
    • /
    • 2018
  • A high directivity TIR (total internal reflection) lens in the UV-A region was designed using a silicone resin, and a UV light source module with a maximum irradiation density of $150mW/cm^2$ was fabricated. The beam angle of the TIR lens was designed to be $8.04^{\circ}$ and the maximum diameter of the TIR lens was Ø13.5. A silicone resin having a UV transmittance of 93% and a refractive index of 1.4 at a wavelength of 365 nm was used, and the lens was manufactured using an aluminum mold, from which silicone could be easily released. The module was fabricated in a metal printed circuit board of COB (chip on board) type using a $0.75{\times}0.75mm^2$ UV chip. A jig was used to adjust the focal length between lens and chip and to fix the position of the lens. The optical characteristics such as illumination distributions of the lens and module were designed using 'LightTools' optical simulation software. The heat dissipation system was designed to use a forced-air cooling method using a heat-sink and fan.

The Properties of $Bi_2Mg_{2/3}Nb_{4/3}O_7$ Thin Films Deposited on Copper Clad Laminates For Embedded Capacitor (임베디드 커패시터의 응용을 위해 CCL 기판 위에 평가된 BMN 박막의 특성)

  • Kim, Hae-Won;Ahn, Jun-Ku;Ahn, Kyeong-Chan;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.45-45
    • /
    • 2007
  • Capacitors among the embedded passive components are most widely studied because they are the major components in terms of size and number and hard to embed compared with resistors and inductors due to the more complicated structure. To fabricate a capacitor-embedded PCB for in-line process, it is essential to adopt a low temperature process (<$200^{\circ}C$). However, high dielectric materials such as ferroelectrics show a low permittivity and a high dielectric loss when they are processed at low temperatures. To solve these contradicting problems, we studied BMN materials as a candidate for dielectric capacitors. processed at PCB-compatible temperatures. The morphologies of BMN thin films were investigated by AFM and SEM equipment. The electric properties (C-F, I-V) of Pt/BMN/Cu/polymer were evaluated using an impedance analysis (HP 4194A) and semiconductor parameter analyzer (HP4156A). $Bi_2Mg_{2/3}Nb_{4/3}O_7$(BMN) thin films deposited on copper clad laminate substrates by sputtering system as a function of Ar/$O_2$ flow rate at room temperature showed smooth surface morphologies having root mean square roughness of approximately 5.0 nm. 200-nm-thick films deposited at RT exhibit a dielectric constant of 40, a capacitance density of approximately $150\;nF/cm^2$, and breakdown voltage above 6 V. The crystallinity of the BMN thin films was studied by TEM and XRD. BMN thin film capacitors are expected to be promising candidates as embedded capacitors for printed circuit board (PCB).

  • PDF

Laser Fired Contact 태양전지 개발을 위한 Screen Printed Laser Back Contact의 최적 $SiN_X$ 두께 분석

  • Lee, Won-Baek;Lee, Yong-U;Jang, Gyeong-Su;Jeong, Seong-Uk;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.280-280
    • /
    • 2010
  • 태양전지의 효율을 증가시키는 방법에는 표면 패시베이션, 접촉면적의 가변, back contact의 두께 가변 등이 있다. 특히, back contact 두께의 가변을 통하여 open circuit voltage의 감소를 최소화 할 수 있을 것이라고 전망 되고 있다. open circuit voltage 은 회로가 개방된 상태로, 무한대의 임피던스가 걸린 상태에서 빛을 받았을 때 태양전지의 양단에 전위차가 형성된다. 본 연구에서는 back contact 두께 가변에 따른, open circuit voltage의 변화를 확인하고 분석하는 것에 그 일차적인 초점을 두었다. 또한, open circuit voltage 뿐만 아니라, short circuit current density, fill factor, series resistance 등의 분석을 하였으며, efficiency를 계산하여 back contact 두께의 가변에 따른 소자 특성의 변화 분석을 통하여 최적화된 back contact위 두께를 연구하였다. 접촉면적에 따른 소자의 성능 변화는 후면 $SiN_X$ 70nm가 open circuit voltage를 15mV ~ 20mV 감소시키는 것을 확인 할 수 있었다. 그 이유는 $SiN_X$가 너무 두꺼우면 BSF 덜 형성되기 때문이다. 최종적으로 $SiN_X$ 두께를 얇게하면 open circuit voltage 의 감소를 최소화 할 수 있을 것이라는 판단을 할 수 있다. 이에, back contact인 $SiN_X$ 두께 가변에 따른 open circuit voltage의 변화를 확인하였다. $SiN_X$ 두께가 증가함에 따라, Positive charges 와 Hydrogen 함유량이 증가하며, 이에 BSF 두께 감소하였다. 또한, $SiN_X$ 두께가 감소함에 따라 Doping barrier로서 역할을 못하게 되어 후면에 n+층 형성되어 open circuit voltage가 급격히 하락하였다. 본 연구에서는 back contact인 $SiN_X$ 두께를 10nm, 30nm, 50nm, 80nm 로 가변하며 실험을 진행하였다.

  • PDF

Analyses of Physical Properties of Copper-contained Sludge Pelletized for Applied Pyro-metallurgical Process (건식제련용 동 함유 슬러지 펠렛 제조 및 물리적 특성평가)

  • Kim, Suyun;Kim, Youngjin;Kim, Seunghyun;Lee, Jaeryeong
    • Resources Recycling
    • /
    • v.28 no.2
    • /
    • pp.31-39
    • /
    • 2019
  • The pelletizing of printed circuit board (PCB) sludge was researched for copper recovery in pyrometallurgical process. This pelletizing was carried out by using self-manufactured compression-type apparatus after pre-treatments (drying, water scrubbing, size classification) were proceeded. The physical properties (compression strength and drop-breakage test) were tested with a change of sludge sizing and the number of compression. In the case of using the undersized sludge of #140, its properties were improved to 0.6 MPa and 9.3 times. Moreover, they increased to 0.82 MPa and 19.0 times by using the #140 ~ 325 sludge. These imply that the packing density increases due to the elimination of large-sized sludge (#140), and also the weight of required binder decreases by the removal of fine-sized sludge (#325).