• Title/Summary/Keyword: principal stress rotation

Search Result 34, Processing Time 0.032 seconds

The Effects of Principal Stress Rotation in K0-Consolidated Clay (K0-압밀점토(壓密粘土)의 주응력회전(主應力回轉) 효과(効果))

  • Hong, Won Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.159-164
    • /
    • 1988
  • The directions of the principal strain increment, stress, and stress increment during rotation of the principal stress axes at any stress level was studied for $K_0$-consolidated clay using torsion shear apparatus with individual control of the vertical stress, the confining pressure, and the shear stress on hollow cylinder specimens under undrained and drained condition. The torsion shear tests were performed according to predetermined stress-paths, which were chosen to cover over the full range of rotation of principal stress axes. The test results indicated that the strain increment vectors at failure coincided with the stress vectors. That is, the direction of strain increment coincided with the direction of stress increment at small stress levels and with the direction of stress at higher stress levels, which indicated that the behavior of clay was transfered from elastic to plastic as the stress level was increased. The applicability of the elastoplastic theory for modeling of the behavior of clay during rotation of the principal stress axes was given.

  • PDF

A Constitutive Model for Rotation of Principal Stress Axes during Direct Simple Shear Deformation (직접단순전단변형에 따른 주응력 방향의 회전을 고려한 구성모델)

  • Park, Sung-Sik;Lee, Jong-Cheon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1C
    • /
    • pp.53-62
    • /
    • 2008
  • A constitutive model, which can simulate the effect of principal stress rotation associated with direct simple shear test, is proposed in this study. The model is based on two mobilized planes. The plastic strains occur from the two mobilized planes, and depend on stress state, and they are added. The first plane is a plane of maximum shear stress, which rotates about the horizontal axis, and the second plane is a horizontal plane which is spatially fixed. The second plane is used to consider the effect of principal stress rotation on simple shear tests under different stress states. The soil skeleton behavior observed in drained simple shear tests is captured in the model. This constitutive model is incorporated into the dynamic coupled stress-flow finite difference program FLAC. The model is first calibrated with drained simple shear tests on loose Fraser River sand. The measured shear stress and volume change are partially induced by principal stress rotation and compared with model calculations. The model is verified by comparing predicted and measured settlements due to rigid footing resting on loose sands. Settlements predicted by the proposed model were very similar to measured settlements. Mohr-Coulomb model can not consider the effect of principal stress rotation and its prediction was only 20% of measured settlements.

A Comparative of Ground Stress with Difference of the Fixed Point Loading and Moving Wheel Loading (모형실험을 통한 고정 및 이동하중 재하 방법에 따른 노반 변형거동 비교)

  • Choi, Chan-Yong;Shin, Eun-Chul;Eum, Ki-Young;Shin, Min-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.1
    • /
    • pp.49-56
    • /
    • 2011
  • In this paper, it was compared the characteristics of the stress and settlement that occur from a track on the ground using a model test and has quantitatively analyzed the difference based on stress path and effect of the rotation of principal stress. Under identical roadbed conditions, the settlement generated by moving wheel loads were found to be 6 times and 3 times larger than that from static loads and cyclic loads, respectively. The deviator stress affecting shear deformation and the length of stress path generated by moving loads were twofold or greater increase than those by static loads. Furthermore, the stress path generated by moving loads was approached more closely to Mohr-Coulomb failure criteria compared to that by static loads. Also, it was found that ballasted track was occurred about 60% of maximum stress at $40^{\circ}$ of the rotation angle of principal stress and was affected with rotation of principal stress with moving wheel loading condition.

Strength Characteristics of Sand in Torsion Shear Tests (비틀림전단시험에 의한 모래의 강도특성)

  • Nam, Jeong-Man;Hong, Won-Pyo;Han, Jung-Geun
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.149-162
    • /
    • 1997
  • A series of torsion shear tests were performed to study the strength characteristics of sand under various stress paths during rotation of principal stress. These results can be classified into two groups of 25cm and 40cm according to the height of specimen, and toy que was applied only in the clockwise direction. In this study, strength characteristics of sand for the principal stress ratio in torsion sheartests were investigated and their results were compared with Lade's failure criterion. And the effect for specimen was considered. From the results of tests, friction angle of sand was affected by the deviatoric principal stress ratio $b:(\sigma_2 -\sigma_s)/(\sigma_2, -\sigma_3)$Failure strength of sand was determined not by the stress paths but by the current stress state. From comparison of specimens on 25cm and 40cm height, effect of end restraint could not be found. In the test where b is over 0.5 due to extension force, necking phenomenon by the strain localization was found.

  • PDF

Verification of Single Hardening Model (단일 경화 모델의 검증)

  • Kim, Dae-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.821-825
    • /
    • 2007
  • In this study, the single hardening model with stress history-dependent plastic potential, which has been most recently proposed based on the critical state soil mechanics and needs few model parameters, was verified for the normally, lightly, and heavily over-consolidated clayey specimens. The triaxial compression tests were strictly conducted. The predictions using the single hardening model generally agree with the measurement. The discrepancy exists on its main focusing on the principal stress rotation; however, the plastic work H and the principal stress rotation angle ${\beta}$ are found to be effective indicators of loading history for the plastic potential function of the stress path dependent materials.

  • PDF

New Flexural Failure Mechanisms for Uniform Compression Stress Fields (균일한 압축장에 대한 새로운 휨 형태의 파괴 매캐니즘)

  • 홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.546-551
    • /
    • 1997
  • New typology of failure mechanisms for uniform compression fields are presented based on the classical theory of plasticity, in particular th normality rule, and the limit theorem. The concrete is assumed as a rigid-perfectly plastic material obeying the modified Coulomb failure criteria with zero tension cut-off. The failure mechanisms are capable of explaining flexural types of crushing failure in uniaxial uniform compression stress fields which are called struts in truss models. The failure mechanisms consist of sliding failure along straight failure lines or hyperbolic failure curves and rigid body rotation. The failure mechanisms involving straight failure lines are explained by constant strain expansion in the first principal direction and rigid body rotation motion. The failure mechanisms presented are applied to the explanation of bond failure of bar combined with concrete crushing failure and flexural crushing failure of concrete.

  • PDF

A Basic Study on Torsion Shear Tests in Soils (흙의 비틀림전단시험에 관한 기초적 연구)

  • 홍원표
    • Geotechnical Engineering
    • /
    • v.4 no.1
    • /
    • pp.17-28
    • /
    • 1988
  • Among several types of element tests to predict soil behalf.iota in a laboratory, the torsion shear apparatus, in which the directions of principal stresses could be rotated during shearing, wra explained. In this study, this torsion shear apparatus was improved so as to be used in tests on clay specimens . And some undrained torsion shear tests u.ere performed on remolded specimens of Ko-consolidated clay to investigate the influence of reorientation of the principal stress directions on the stress-strain behavior The soil behavior by the torsion shear apparatus without torque was compared It.ith that by the conventional triaxial compression tests . The stress path, provided by both vertical loads and torque during torsion shear tests, has much effect on the stress-strain behavior, the pore pressure and the effective principal stress ratio . The rotation angle of the principal stress and the b-value were gradually increased with increasing shear strain, but converged to the values at failure.

  • PDF

A Two Mobilized-Plane Model for Soil Liquefaction Analysis (액상화해석을 위한 두 개의 활성면을 가진 구성모델)

  • Park, Sung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.173-181
    • /
    • 2006
  • A Two Mobilized-Plane Model is proposed for monotonic and cyclic soil response including liquefaction. This model is based on two mobilized planes: a plane of maximum shear stress, which rotates, and a horizontal plane which is spatially fixed. By controlling two mobilized planes, the model can simulate the principal stress rotation effect associated with simple shear from different $K_0$ states. The proposed model gives a similar skeleton behaviour for soils having the same mean stress, regardless of $K_0$ conditions as observed in laboratory tests. The soil skeleton behaviour observed in cyclic drained simple shear tests, including compaction during unloading and dilation at large strain is captured in the model. Undrained monotonic and cyclic response is predicted by imposing the volumetric constraint of the water on the drained or skeleton behaviour. This constitutive model is incorporated into the dynamic coupled stress-flow finite difference program of FLAC (Fast Lagrangian Analysis of Continua). The model was first calibrated with drained simple shear tests on Fraser River sand, and verified by comparing predicted and measured undrained behaviour of Fraser River sand using the same input parameters.

Investigating the Stress on Fault Plane Associated with Fault Slip Using Boundary Element Method (경계요소법을 이용한 단층 슬립에 따른 단층면 응력에 관한 연구)

  • Sung Kwon, Ahn;Hee Up, Lee;Jeongjun, Park;Mintaek, Yoo
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.598-610
    • /
    • 2022
  • Avoiding a fault zone would be a best practice for safety in underground construction, which is only sometimes possible because of many restrictions and other field conditions. For instance, there is an ongoing conception of Korea-Japan subsea tunnels that inevitably cross a massive fault system in the Korea Strait. Therefore it was deemed necessary to find an efficient way of predicting the likely behaviour of underground structures under fault slip. This paper presents the findings from simple numerical analysis for investigating the stress induced at a normal fault with a dip of 45 degrees. We used a boundary element software that assumed constant displacement discontinuity, which allowed the displacement to be estimated separately at both the fault's hangingwall and footwall sides. The results suggested that a principal stress rotation of 45 degrees occurred at the edges of the fault during the slip, which was in agreement with the phenomenon for fault plane suggested in the body of literature. A simple numerical procedure presented in this paper could be adopted to investigate other fault-related issues associated with underground structure construction.

Modelling of Principal Stress Rotation in Ko Consolidated Clay (Ko-압밀점토지반속 주응력회전 현상의 모형화)

  • Hong, Won-Pyo;Kim, Tae-Hyeong;Lee, Jae-Ho
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.35-46
    • /
    • 1997
  • The isotropic single-hardening constitutive model has been applied to predict the behavior of soils during reorientation of principal stresses in the field. The predicted response by the model agrees well with the measured behavior for a series of torsion shear tests performed on hollow cylinder specimens of Ko consoildated clay along various stress -paths. This indicates that the soil behavior during reorientation of principal stresses can be predicted by using the model with application of simple informations given by isotropic compression tests and conventional consolidated-undxained triaxial compression tests. Isotropic elasto-plastic soil behavior has been served during primary loading from both the torsion shear tests and the predictions by the model. However, the directions of maj or principal strain increment given by the model have not coincided with the directions for tests during stress reversal, such as unloading and reloading, within isotropic yield surface for Ko consolidated stress. This indicates that kinematic hardening model instead of isotropic hardening model should be developed to predict the soil behavior during stress reversal. The experimental strain increment vectors in the work-space have been compared with the directions expected for associated and nonassociated flow rules.

  • PDF