• Title/Summary/Keyword: principal component analysis

Search Result 2,501, Processing Time 0.033 seconds

Analysis of Tidal Channel Variations Using High Spatial Resolution Multispectral Satellite Image in Sihwa Reclaimed Land, South Korea (고해상도 다분광 인공위성영상자료 기반 시화 간척지 갯골 변화 양상 분석)

  • Jeong, Yongsik;Lee, Kwang-Jae;Chae, Tae-Byeong;Yu, Jaehyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1605-1613
    • /
    • 2020
  • The tidal channel is a coastal sedimentary terrain that plays the most important role in the formation and development of tidal flats, and is considered a very important index for understanding and distribution of tidal flat sedimentation/erosion terrain. The purpose of this study is to understand the changes in tidal channels by a period after the opening of the floodgate of the seawall in the reclaimed land of Sihwa Lake using KOMPSAT high-resolution multispectral satellite image data and to evaluate the applicability and efficiency of high-resolution satellite images. KOMPSAT 2 and 3 images were used for extraction of the tidal channels' lineaments in 2009, 2014, and 2019 and were applied to supervised classification method based on Principal Component Analysis (PCA), Artificial Neural Net (ANN), Matched Filtering (MF), and Spectral Angle Mapper (SAM) and band ratio techniques using Normalized Difference Water Index (NDWI) and MF/SAM. For verification, a numerical map of the National Geographic Information Service and Landsat 7 ETM+ image data were utilized. As a result, KOMPSAT data showed great agreement with the verification data compared to the Landsat 7 images for detecting a direction and distribution pattern of the tidal channels. However, it has been confirmed that there will be limitations in identifying the distribution of tidal channels' density and providing meaningful information related to the development of the sedimentary process. This research is expected to present the possibility of utilizing KOMPSAT image-based high-resolution remote exploration as a way of responding to domestic intertidal environmental issues, and to be used as basic research for providing multi-platform-image-based convergent thematic maps and topics.

Detection of Drought Stress in Soybean Plants using RGB-based Vegetation Indices (RGB 작물 생육지수를 활용한 콩 한발 스트레스 판별기술 평가)

  • Sang, Wan-Gyu;Kim, Jun-Hwan;Baek, Jae-Kyeong;Kwon, Dongwon;Ban, Ho-Young;Cho, Jung-Il;Seo, Myung-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.340-348
    • /
    • 2021
  • Continuous monitoring of RGB (Red, Green, Blue) vegetation indices is important to apply remote sensing technology for the estimation of crop growth. In this study, we evaluated the performance of eight vegetation indices derived from soybean RGB images with various agronomic parameters under drought stress condition. Drought stress influenced the behavior of various RGB vegetation indices related soybean canopy architecture and leaf color. In particular, reported vegetation indices such as ExGR (Excessive green index minus excess red index), Ipca (Principal Component Analysis Index), NGRDI (Normalized Green Red Difference Index), VARI (Visible Atmospherically Resistance Index), SAVI (Soil Adjusted Vegetation Index) were effective tools in obtaining canopy coverage and leaf chlorophyll content in soybean field. In addition, the RGB vegetation indices related to leaf color responded more sensitively to drought stress than those related to canopy coverage. The PLS-DA (Partial Squares-Discriminant Analysis) results showed that the separation of RGB vegetation indices was distinct by drought stress. The results, yet preliminary, display the potential of applying vegetation indices based on RGB images as a tool for monitoring crop environmental stress.

Plasma metabolites associated with physiological and biochemical indexes indicate the effect of caging stress on mallard ducks (Anas platyrhynchos)

  • Zheng, Chao;Wu, Yan;Liang, Zhen Hua;Pi, Jin Song;Cheng, Shi Bin;Wei, Wen Zhuo;Liu, Jing Bo;Lu, Li Zhi;Zhang, Hao
    • Animal Bioscience
    • /
    • v.35 no.2
    • /
    • pp.224-235
    • /
    • 2022
  • Objective: Cage rearing has critical implications for the laying duck industry because it is convenient for feeding and management. However, caging stress is a type of chronic stress that induces maladaptation. Environmental stress responses have been extensively studied, but no detailed information is available about the comprehensive changes in plasma metabolites at different stages of caging stress in ducks. We designed this experiment to analyze the effects of caging stress on performance parameters and oxidative stress indexes in ducks. Methods: Liquid chromatography tandem mass spectrometry (LC/MS-MS) was used to determine the changes in metabolites in duck plasma at 5 (CR5), 10 (CR10), and 15 (CR15) days after cage rearing and traditional breeding (TB). The associated pathways of differentially altered metabolites were analyzed using Kyoto encyclopedia of genes and genomes (KEGG) database. Results: The results of this study indicate that caging stress decreased performance parameters, and the plasma total superoxide dismutase levels were increased in the CR10 group compared with the other groups. In addition, 1,431 metabolites were detected. Compared with the TB group, 134, 381, and 190 differentially produced metabolites were identified in the CR5, CR10, and CR15 groups, respectively. The results of principal component analysis (PCA) show that the selected components sufficiently distinguish the TB group and CR10 group. KEGG analysis results revealed that the differentially altered metabolites in duck plasma from the CR5 and TB groups were mainly associated with ovarian steroidogenesis, biosynthesis of unsaturated fatty acids, and phenylalanine metabolism. Conclusion: In this study, the production performance, blood indexes, number of metabolites and PCA were compared to determine effect of the caging stress stage on ducks. We inferred from the experimental results that caging-stressed ducks were in the sensitive phase in the first 5 days after caging, caging for approximately 10 days was an important transition phase, and then the duck continually adapted.

Item-Level Psychometrics of the 12 Items of the Coping Orientation to Problems Experienced Scale (스트레스 대처 척도 12개 항목에 대한 심리측정 속성)

  • Nam, Sanghun;Hilton, Claudia L.;Lee, Mi-Jung;Pritchard, Kevin T.;Bae, Suyeong;Hong, Ickpyo
    • Therapeutic Science for Rehabilitation
    • /
    • v.11 no.3
    • /
    • pp.65-80
    • /
    • 2022
  • Objective : This study examined the psychometric properties of the 12-item Coping Orientation to Problems Experienced Scale (COPE) using Rasch analysis. COPE is one of the instruments used to measure stress-coping skills. Methods : The study participants were 480 community-dwelling older adults. We tested the instrument's unidimensionality assumption using principal component analysis (PCA). Item fit was examined using infit-and-outfit mean-square (MnSq) and standardized fit statistics (ZSTD). The precision and item difficulty hierarchies of the instrument were examined. The item-difficulty hierarchy was investigated to identify the easy and difficult items. We tested differential item functioning (DIF) for sex and age groups. Results : PCA revealed that the instrument met the unidimensionality assumption (eigenvalue = 1.78). Among the 12 items, item 2 was removed because of misfit (Infit MnSq = 1.33, Infit ZSTD = 5.05, Outfit MnSq = 1.56, Outfit ZSTD = 7.15). The remaining 11 items demonstrated a conceptual item-difficulty hierarchy. The person strata value was 3.10, which is equivalent to a reliability index value of 0.81. There was no DIF for the sex and age groups (DIF contrast <0.27). Conclusion : The findings indicated that the revised COPE-11 has adequate item-level psychometric properties and can accurately measure stress coping skills.

Effects of diet and castration on fatty acid composition and volatile compounds in the meat of Korean native black goats

  • Jinwook Lee;Hye-Jin Kim;Sung-Soo Lee;Kwan-Woo Kim;Dong-Kyo Kim;Sang-Hoon Lee;Eun-Do Lee;Bong-Hwan Choi;Farouq Heidar Barido;Aera Jang
    • Animal Bioscience
    • /
    • v.36 no.6
    • /
    • pp.962-972
    • /
    • 2023
  • Objective: This study determined the effects of dietary treatments and castration on meat quality, fatty acids (FAs) profiles, and volatile compounds in Korean native black goats (KNBG, Capra hircus coreanae), including the relationship between the population of rumen microbiomes and meat FA profiles. Methods: Twenty-four KNBG (48.6±1.4 kg) were randomly allocated to one of four treatments arranged into a 2×2 factorial structure. The factors were dietary forage to concentrate ratio (high forage [HF, 80:20] and low forage [LF, 20:80]), and a castration treatment (castration [CA] vs non-castration [NCA]). Results: Among meat quality traits, the CA group exhibited a higher percentage of crude fat and water holding capacity (p<0.05). The profiles of the saturated fatty acid (SFA) in meat sample derived from CA KNBG showed a significantly lower percentage compared to NCA individuals, due to the lower proportion of C14:0 and C18:0. Feeding a high-forage diet to KNBG increased the formation of C18:1n7, C18:3n3, C20:1n9, C22:4n6 in meat, and polyunsaturated fatty acid (PUFA) profiles (p<0.05). Consequently, the n6:n3 ratio declined (p<0.05). There was an interaction between dietary treatment and castration for formation of C20:5n3 (p<0.05), while C18:1n9, C22:6n3, monounsaturated fatty acid (MUFA) and the MUFA:SFA ratio were influenced by both diet and castration (p<0.05). Nine volatile compounds were identified and were strongly influenced by both dietary treatments, castration (p<0.05), and their interaction. In addition, principal component analysis (PCA) revealed distinctly different odor patterns in the NCA goats fed LF diets. Spearman correlation analysis showed a high correlation between rumen bacteria and meat PUFAs. Conclusion: These results suggest the essential effects of the rumen microbial population for the synthesis of meat FAs and volatile compounds in KNBG meat, where dietary intake and castration also contribute substantially.

Investigating the Relationship Between Vehicle Front Images and Voice Assistants (자동차 전면부와 음성 어시스턴트의 스타일 관계 분석)

  • Min-Jung Park;So-Yeong Min;Tae-Su Kim;Hyeon-Jeong Suk
    • Science of Emotion and Sensibility
    • /
    • v.25 no.4
    • /
    • pp.129-138
    • /
    • 2022
  • In the context of the increasing applications of voice assistants in vehicles, we focused on the association between the visual appeal of the cars and the acoustic characteristics of the voice assistants. This study aimed to investigate the relationship between the visual appeal of the vehicle and the voice assistant based on their emotional characteristics. A total of 15 adjectives were used to assess the emotional characteristics of 12 types of cars and six types of voices. An online interview was carried out, instructing participants to match three adjectives with the presented car images or voices. This was followed with a brief interview to allow the participants to reflect on the adjective matches. Based on the assessments, we performed principal component analysis (PCA) to determine factors. We aimed to deploy the cars and voices and analyze the patterns of clustering. The PCA analysis revealed two factors profiled as "Light-Heavy" and "Comfortable-Radical." Both car and voice stimuli were deployed in a two-dimensional space showing the internal relationship within and between the two substances. Based on the coordination data, a hierarchical cluster grouped the 18 stimuli into four groups labeled as challenge, elegance, majesty, and vigor. This study identified two latent factors describing the emotional characteristics of both car images and voice types clustered into four groups based on their emotional characteristics. The coherent matches between car style and voice type are expected to address the design concept more successfully.

A Desirability Function-Based Multi-Characteristic Robust Design Optimization Technique (호감도 함수 기반 다특성 강건설계 최적화 기법)

  • Jong Pil Park;Jae Hun Jo;Yoon Eui Nahm
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.199-208
    • /
    • 2023
  • Taguchi method is one of the most popular approaches for design optimization such that performance characteristics become robust to uncontrollable noise variables. However, most previous Taguchi method applications have addressed a single-characteristic problem. Problems with multiple characteristics are more common in practice. The multi-criteria decision making(MCDM) problem is to select the optimal one among multiple alternatives by integrating a number of criteria that may conflict with each other. Representative MCDM methods include TOPSIS(Technique for Order of Preference by Similarity to Ideal Solution), GRA(Grey Relational Analysis), PCA(Principal Component Analysis), fuzzy logic system, and so on. Therefore, numerous approaches have been conducted to deal with the multi-characteristic design problem by combining original Taguchi method and MCDM methods. In the MCDM problem, multiple criteria generally have different measurement units, which means that there may be a large difference in the physical value of the criteria and ultimately makes it difficult to integrate the measurements for the criteria. Therefore, the normalization technique is usually utilized to convert different units of criteria into one identical unit. There are four normalization techniques commonly used in MCDM problems, including vector normalization, linear scale transformation(max-min, max, or sum). However, the normalization techniques have several shortcomings and do not adequately incorporate the practical matters. For example, if certain alternative has maximum value of data for certain criterion, this alternative is considered as the solution in original process. However, if the maximum value of data does not satisfy the required degree of fulfillment of designer or customer, the alternative may not be considered as the solution. To solve this problem, this paper employs the desirability function that has been proposed in our previous research. The desirability function uses upper limit and lower limit in normalization process. The threshold points for establishing upper or lower limits let us know what degree of fulfillment of designer or customer is. This paper proposes a new design optimization technique for multi-characteristic design problem by integrating the Taguchi method and our desirability functions. Finally, the proposed technique is able to obtain the optimal solution that is robust to multi-characteristic performances.

Fruit Morphology, Citrulline, and Arginine Levels in Diverse Watermelon (Citrullus lanatus) Germplasm Collections

  • Awraris Derbie Assefa;On-Sook Hur;Na-Young Ro;Jae-Eun Lee;Ae-Jin Hwang;Bit-Sam Kim;Ju-hee Rhee;Jung Yoon Yi;Ji Hyun Kim;Ho-Sun Lee;Jung-Sook Sung;Myung-Kon Kim;Jae-Jong Noh
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.33-33
    • /
    • 2020
  • Watermelon (Citrullus lanatus) is a non-seasonal, economically important, cucurbit cultivated throughout the world with Asia as a continent contributing the most. As part of the effort in diversifying watermelon genetic resources in the already cultivated group, this study was devoted to providing baseline data on morphological quality traits and health-beneficial phytonutrients of watermelon germplasm collections, thereby promoting watermelon research and cultivation programs. To this end, we reported morphological traits, citrulline, and arginine levels of watermelon genetic resources obtained from the gene bank of Agrobiodiversity Center, Republic of Korea, and discussed the relationship between each other. Diverse characteristics were observed among many of the traits. But, most of the genetic resources (>90%) were either red or pink-fleshed. Korean origin fruits contained intermediate levels of soluble solid content (SSC) while The USA, Russian, Tajikistan, Turkmenistan, Taiwan, and Uruguay originated had generally the highest levels of soluble solids. The citrulline and arginine contents using HPLC method were ranged from 6.9 to 52.1 mg/g (average, 27.3 mg/g) and 1.8 to 21.3 mg/g (average, 9.8 mg/g), respectively. The citrulline content determined using Citrulline Assay Kit was ranged from 6.5 to 42.8 mg/g (average, 27.0 mg/g). Resources with high citrulline and arginine levels contained low SSC. Whereas, red- and pink-colored flesh samples had less citrulline compared to yellow and orange. In addition to the profiling of morphological characters and phytonutrients, molecular marker characterization and identification of sources of resistance to diseases and pests are recommended for a more complete diversity analysis of watermelon genetic resources.

  • PDF

Effect of Seed Coat Color and Seed Weight on Protein, Oil and Fatty Acid Contents in Seeds of Soybean (Glycine max (L.) Merr.) Germplasms

  • Yu-Mi Choi;Hyemyeong Yoon;Myoung-Jae Shin;Yoonjung Lee;On Sook Hur;XiaoHan Wang;Kebede Taye Desta
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.15-15
    • /
    • 2021
  • Seed coat color and seed weight are among the key agronomical traits that determine the nutritional quality of soybean seeds. This study aimed to evaluate the contents of total protein, total oil and five prominent fatty acids in seeds of 49 soybean varieties recently cultivated in Korea, and assess the influences of seed coat color and seed weight on each. Total protein and total oil contents were in the ranges of 36.28-44.19% and 13.45-19.20%, respectively. Likewise, individual fatty acid contents were in the ranges of 9.90-12.55, 2.45-4.00, 14.97-38.74, 43.22-60.26, and 5.37-12.33% for palmitic, stearic, oleic, linoleic, and linolenic acids, respectively. Our results found significant variations of protein, oil and fatty acid contents between the soybean varieties. Moreover, both seed coat color and seed weight significantly affected total oil and fatty acid contents. Total protein content, however, was not significantly affected by any factor. Among colored soybeans, pale-yellow soybeans were characterized by a high level of oleic acid (30.70%) and low levels of stearic (2.72%), linoleic (49.30%) and linolenic (6.44%) acids, each being significantly different from the rest of colored soybeans (p < 0.05). On the other hand, small soybeans were characterized by high levels of all individual fatty acids except oleic acid. The level of oleic acid was significantly high in large seeds. Cluster analysis grouped the soybeans into two classes with notable content differences. Principal component analysis also revealed fatty acids as the prime factors for the variability observed among the soybean varieties. As expected, total oil and total protein contents showed a negative association with each other (r = -0.714, p < 0.0001). Besides, oleic acid and linoleic acid showed a tradeoff relationship (r = -0.936, p < 0.0001) which was reflected with respect to both seed coat color and seed weight. In general, the results of this study shade light on the significance of seed coat color and seed weight to distinguish soybeans in terms of protein, oil and fatty acid contents. Moreover, the soybean varieties with distinct characteristics and nutritional contents identified in this study could be important genetic resources for consumption and cultivar development.

  • PDF

Changes in aroma compounds of decaffeinated coffee beans (디카페인 커피 원두의 향기성분 변화)

  • Jin-Young Lee;Young-Soo Kim
    • Food Science and Preservation
    • /
    • v.30 no.3
    • /
    • pp.492-501
    • /
    • 2023
  • In this study, we wanted to understand the impact of different decaffeination processes on aroma compounds of coffee. Therefore, we analyzed differences in physical characteristics and volatile aroma compounds profiles of regular coffee (RC), Swiss water process decaffeinated coffee (SWDC), and supercritical CO2 decaffeinated coffee (SCDC) after roasting the coffee beans. The electronic nose analysis identified RC and SCDC as different groups which indicates that these groups volatile aroma compound compositions were different. The principal component analysis of volatile compound patterns identified using an electronic nose indicated that there was a large difference in volatile compounds between RC, which was not decaffeinated, and both decaffeinated SWDC and SCDC. The major aroma compounds of RC, SWDC and SCDC were propan-2-one and hexan-2-one which are ketone, and hexanal and (E)-2-pentenal which are aldehyde and 3-methyl-1-butanol which is an alcohol. After roasting, the composition of major volatile compounds appearing in the beans was similar, but the relative odor intensity was different. We identified 28 volatile aroma compounds from RC, SWDC, and SCDC using headspace-solid phase microextraction-gas chromatography/mass spectrometry (HS-SPME-GC/MS), and analyzed 10 major compounds that were present in high abundance, including furfural, 2-furanmethanol, 2,5-dimethylpyrazine, and 2-ethyl-3-methylpyrazine.