DOI QR코드

DOI QR Code

Investigating the Relationship Between Vehicle Front Images and Voice Assistants

자동차 전면부와 음성 어시스턴트의 스타일 관계 분석

  • 박민정 (한국과학기술원 산업디자인학과) ;
  • 민소영 (한국과학기술원 산업디자인학과) ;
  • 김태수 (한국과학기술원 산업디자인학과 ) ;
  • 석현정 (한국과학기술원 산업디자인학과 )
  • Received : 2022.09.08
  • Accepted : 2022.11.09
  • Published : 2022.12.31

Abstract

In the context of the increasing applications of voice assistants in vehicles, we focused on the association between the visual appeal of the cars and the acoustic characteristics of the voice assistants. This study aimed to investigate the relationship between the visual appeal of the vehicle and the voice assistant based on their emotional characteristics. A total of 15 adjectives were used to assess the emotional characteristics of 12 types of cars and six types of voices. An online interview was carried out, instructing participants to match three adjectives with the presented car images or voices. This was followed with a brief interview to allow the participants to reflect on the adjective matches. Based on the assessments, we performed principal component analysis (PCA) to determine factors. We aimed to deploy the cars and voices and analyze the patterns of clustering. The PCA analysis revealed two factors profiled as "Light-Heavy" and "Comfortable-Radical." Both car and voice stimuli were deployed in a two-dimensional space showing the internal relationship within and between the two substances. Based on the coordination data, a hierarchical cluster grouped the 18 stimuli into four groups labeled as challenge, elegance, majesty, and vigor. This study identified two latent factors describing the emotional characteristics of both car images and voice types clustered into four groups based on their emotional characteristics. The coherent matches between car style and voice type are expected to address the design concept more successfully.

음성 어시스턴트가 차량에 탑재되기 시작하면서, 차량의 조형적 특징과 음성 어시스턴트간의 연관성이 중요해지고 있다. 본 연구는 자동차에 적용된 음성 어시스턴트와 외관의 조화스러움에 대하여 공통된 감성적 특징을 기반으로 살펴보고자 하였다. 12가지 차량 이미지와 6가지의 음성 어시스턴트에 대해 15종의 형용사를 바탕으로 감성 평가를 실시하였다. 실험은 온라인 개별 인터뷰로 진행되었으며, 총 24명의 대학생이 참여하였다. 참여자들은 각 자극물을 대표하는 감성 형용사 3종을 1, 2, 3위로 평가하고, 선정 이유에 대한 간단한 인터뷰를 진행하였다. 설문 결과에 대해 주성분분석을 수행하여 2개의 주요 요인을 추출한 뒤, 각 요인을 축으로 하여 자극물을 분포시켰다. 분포도를 바탕으로 감성적 특징을 도출하고자 계층적 군집 분석을 수행하였다. 주성분 분석 결과 자동차 이미지와 음성 어시스턴트를 설명하는 감성적 차원으로 "편안한-급진적인"과 "가벼운-무거운"이 추출되었다. 두 차원을 바탕으로 자극물들을 분포시킨 결과, 자동차와 음성 어시스턴트가 동일한 축을 바탕으로 다양하게 분포해 두 요인이 자극물간 감성적 특징을 도출하기에 적합하다고 판단되었다. 자극물들의 분포도를 바탕으로 계층적 군집분석을 수행하여 17개의 자극물을 4가지 군집으로 추렸다. 각 군집은 도전적인, 우아한, 위엄있는, 활기찬 그룹으로 도출되었다. 본 연구에서는 차량의 조형적 특징과 음성 어시스턴트의 감성적 이미지를 동시에 설명할 수 있는 두 축을 도출하였다. 도출된 축을 바탕으로 그려진 분포도에 군집 분석을 수행해 감성적 특징을 분류하였으며, 총 4개의 감성적 특징이 도출되었다. 본 연구는 자동차의 조형적 특징에 맞춘 음성 어시스턴트 제안을 위한 디자인 품평 가이드로 활용되어, 추후 출시되는 차량에서 사용자들의 자동차 음성 어시스턴트 감성 경험이 증진될 것으로 기대한다.

Keywords

References

  1. Benz, M. (2019). Mbux [(Accessed on 01/14/2022)]. Retrieved from %5Curl%7Bhttps://www.mercedes-benz.co.kr/passengercars/mercedes-benz-cars/models/a-class/hatchback-w177/comfort/model-year-update-v2.module.html%7D
  2. BMW. (2019). Bmw intelligent personal assistant. [(Accessed on 01/14/2022)].
  3. Braun, M., Mainz, A., Chadowitz, R., Pfleging, B., & Alt, F. (2019). At your service: Designing voice assistant personalities to improve automotive user interfaces. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 1-11. DOI: 10.1016/S0165-1838(96)00108-7
  4. Cambre, J., & Kulkarni, C. (2019). One voice fits all? social implications and research challenges of designing voices for smart devices. Proceedings of the ACM on human-computer interaction, 3 (CSCW), 1-19. DOI: 10.1145/3359325
  5. Chae, H. S., Hong, J. Y., Jeon, M. H., & Han, K. H. (2007). A study on voice user interface for domestic appliance, Science of Emotion & Sensibility, 10(1), 55-68.
  6. Chae, H. S., Hong, J. Y., Lee, J. H., Jeon, M. H., & Han, K. H. (2007). A study on voice user interface for domestic appliance. Science of Emotion & Sensibility, 10(1), 55-68
  7. Choi, Y. (2008). A study on the predictions of impression evaluation of speech voice. Journal of Speech and Hearing Disorders, 17(1), 123-145. DOI: 10.15724/jslhd.2008.17.1.007
  8. Easwara Moorthy, A., & Vu, K.-P. L. (2015). Privacy concerns for use of voice activated personal assistant in the public space. International Journal of Human-Computer Interaction, 31(4), 307-335. DOI: 10.1080/10447318.2014.986642
  9. Eric, T., Ivanovic, S., Milivojsa, S., Matic, M., & Smiljkovic, N. (2017, September). Voice control for smart home automation: Evaluation of approaches and possible architectures. In 2017 IEEE 7th International Conference on Consumer Electronics-Berlin (ICCE-Berlin) (pp. 140-142). IEEE. DOI: 10.1109/ICCE-Berlin.2017.8210613
  10. Forster, Y., Naujoks, F., & Neukum, A. (2017). Increasing anthropomorphism and trust in automated driving functions by adding speech output. 2017 IEEE intelligent vehicles symposium (IV), 365-372. DOI: 10.1109/IVS.2017.7995746
  11. Hoback, A. S. (2018). Pareidolia and perception of anger in vehicle styles: Survey results. International Journal of Psychological and Behavioral Sciences, 12(8), 1049-1055. DOI: 10.5281/zenodo.1340556
  12. Jindo, T., & Hirasago, K. (1997). Application studies to car interior of kansei engineering. International Journal of Industrial Ergonomics, 19(2), 105-114. DOI: 10.1016/S0169-8141(96)00007-8
  13. Kim, G., & Kim, J.-S. (2011). The effect of attitude type and preference about car design on eye movement. Korean Journal of Consumer and Advertising Psychology, 12(2), 379-404. DOI: 10.21074/kjlcap.2011.12.2.379
  14. Kim, J., & Han, K. (2014). Emotion changed by headlamp design factors of frontal vehicle design. HCI Korea 2014, 683-686.
  15. Lee, K., & Choi, K.-W. (2008). An observation on expression factors in automotive frontal exterior designs. Archives of Design Research, 21(4), 35-45.
  16. Lee, S., Kim, S., & Lee, S. (2019). "what does your agent look like?" a drawing study to understand users' perceived persona of conversational agent. Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems, 1-6. DOI: 10.1145/3290607.3312796
  17. Liem, A., Abidin, S., & Warell, A. (2009). Designers' perceptions of typical characteristics of form treatment in automobile styling. 5th International Workshop on Design & Semantics of Form and Movement, DesForm.
  18. Lopatovska, I., Rink, K., Knight, I., Raines, K., Cosenza, K., Williams, H., Sorsche, P., Hirsch, D., Li, Q., & Martinez, A. (2019). Talk to me: Exploring user interactions with the amazon alexa. Journal of Librarianship and Information Science, 51(4), 984-997. DOI: 10.1177%2F0961000618759414 https://doi.org/10.1177%2F0961000618759414
  19. Lugano, G. (2017). Virtual assistants and self-driving cars. 2017 15th International Conference on ITS Telecommunications (ITST), 1-5. DOI: 10.1109/ITST.2017.7972192
  20. Matsuoka, T., Kanai, H., Tsuji, H., Shinya, T., & Nsihimatsu, T. (2008). Predicting texture image of covering fabric for car seat by physical properties. Journal of Textile Engineering, 54(3), 63-74. DOI: 10.4188/jte.54.63
  21. Moore, R. K. (2017). Appropriate voices for artefacts: Some key insights. 1st International workshop on vocal interactivity in-and-between humans, animals and robots.
  22. Nafari, M., & Weaver, C. (2013). Augmenting visualization with natural language translation of interaction: A usability study. Computer Graphics Forum, 32(3pt4), 391-400. DOI: 10.1111/cgf.12126
  23. Nasirian, F., Ahmadian, M., & Lee, O.-K. D. (2017). Ai-based voice assistant systems: Evaluating from the interaction and trust perspectives.
  24. Nass, C., Jonsson, I.-M., Harris, H., Reaves, B., Endo, J., Brave, S., & Takayama, L. (2005). Improving automotive safety by pairing driver emotion and car voice emotion. CHI'05 extended abstracts on Human factors in computing systems, 1973-1976. DOI: 10.1145/1056808.1057070
  25. Peissner, M., Doebler, V., & Metze, F. (2011). Can voice interaction help reducing the level of distraction and prevent accidents. Metastudy Driver Distraction Voice Interaction, 24(5).
  26. Ranscombe, C., Hicks, B., Mullineux, G., & Singh, B. (2012). Visually decomposing vehicle images: Exploring the influence of different aesthetic features on consumer perception of brand. Design Studies, 33(4), 319-341. DOI: 10.1016/j.destud.2011.06.006
  27. SANO, S. (2010). Facial expressions in car design. DOI: 10.5281/zenodo.2605681
  28. Sodnik, J., Dicke, C., Tomazic, S., & Billinghurst, M. (2008). A user study of auditory versus visual interfaces for use while driving. International Journal of Human-Computer Studies, 66(5), 318-332. DOI: 10.1016/ j.ijhcs.2007.11.001
  29. Tewari, A., Khan, S., Krishnan, A., Rauth, T., & Singh, J. (2018). Smart driver assistant.2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), 1127-1131. DOI: 10.1109/ICECA.2018.8474760
  30. Waytz, A., Heafner, J., & Epley, N. (2014). The mind in the machine: Anthropomorphism increases trust in an autonomous vehicle. Journal of Experimental Social Psychology, 52, 113-117. DOI: 10.1016/j.jesp.2014.01.005
  31. Yoo, Y., Yang, M.-y., Lee, S., Baek, H., & Kim, J. (2022). The effect of the dominance of an in-vehicle agent's voice on driver situation awareness, emotion regulation, and trust: A simulated lab study of manual and automated driving. Transportation Research Part F: Traffic Psychology and Behaviour, 86, 33-47. DOI: 10.1016/j.trf.2022.01.009