Acknowledgement
본 논문은 농촌진흥청 국립식량과학원 농업과학기술 연구개발사업(과제번호: PJ01476801)의 지원에 의해 이루어진 것임.
References
- Araus, J. L., S. C. Kefauver, M. Z. Allah, M. S. Olsen, and J. E. Cairns, 2018: Translating highthroughput phenotyping into genetic gain. Trends in Plant Science 23, 451-466. https://doi.org/10.1016/j.tplants.2018.02.001
- Garcia-Ruiz, F., S. Sankaran, J. M. Maja, W. S. Lee, J. Rasmussen, and R. Ehsani, 2013: Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees. Computers and Electronics in Agriculture 91, 106-115. https://doi.org/10.1016/j.compag.2012.12.002
- Lee, Y. H., W. G. Sang, J. K. Baek, J. H. Kim, J. I. Cho, and M. C. Seo, 2020: Low-cost assessment of canopy light interception and leaf area in soybean canopy cover using RGB color images. Korean Journal of Agricultural and Forest Meteorology 22(1), 13-19. https://doi.org/10.5532/KJAFM.2020.22.1.13
- Li, L., Q, Zhabg, and D. Huang, 2014: A review of imaging techniques for plant phenotyping. Sensors 14, 20078-20111. https://doi.org/10.3390/s141120078
- Nasirzadehdizaji, R., F. B. Sanli, S. Abdikan, Z. Cakir, A. Sekertekin, and M. Ustuner, 2019: Sensitivity analysis of multi-temporal sentinel-1 SAR parameters to crop height and canopy coverage. Applied Science 9, 655. https://doi.org/10.3390/app9040655
- Richardson, A. D., S. P. Duigan, and G. P. Berlyn, 2002: An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytologist 153, 185-194. https://doi.org/10.1046/j.0028-646X.2001.00289.x
- Sang, W. G., 2020: Impact of climate change on growth, canopy photosynthesis and metabolic physiology of soybean in Southern Korea. Jeonbuk National University.
- Smith, G. M., and E. J. Milton, 1999: The use of the empirical line method to calibrate remotely sensed data to reflectance. International Journal of Remote Sensing 20(13), 2653-2662. https://doi.org/10.1080/014311699211994
- Swain, K. C., S. J. Thomson, and H. P. W. Jayasuriya, 2010: Adoption of an unmanned helicopter for low-altitude remote sensing to estimate yield and total biomass of a rice crop. American Society of Agricultural and Biological Engineers 53(1), 21-27.
- Torres-Sanchez, J., J. M. Pena, A. I. de Castro, and F. Lopez-Granados, 2014: Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Computers and Electronics in Agriculture 103, 104-113. https://doi.org/10.1016/j.compag.2014.02.009
- Wahid, A., and E. Rasul, 2005: Photosynthesis in leaf, stem, flower and fruit, in: Pessarakil M. (Ed.), Handbook of Photosynthesis, 2nd ed., CRC Press, Florid, 104-109.
- Wang, C., and S. W. Myint, 2015: A Simplified Empirical Line Method of Radiometric Calibration for Small Unmanned Aircraft Systems-Based Remote Sensing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 8(5), 1876-1885. https://doi.org/10.1109/JSTARS.2015.2422716
- Yun, H., 2017: Development of Remote Sensing Technology for Growth Estimation of White Radish and Napa Cabbage using UAV and RGB Camera. Seoul National University.
- Zarco-Tejada, P. J., V. Gonzalez-Dugo, L. E. Williams, L. Suarez, J. A. Berni, D. Goldhamer, and E. Fereres, 2013: A PRI-based water stress index combining structural and chlorophyll effects: Assessment using diurnal narrow-band airborne imagery and the CWSI thermal index. Remote Sensing of Environment 138, 38-50. https://doi.org/10.1016/j.rse.2013.07.024