• 제목/요약/키워드: primary loading

검색결과 364건 처리시간 0.03초

반복 응력-변형률 시험을 통한 반복하중 조건에서 원전 주요 구조재료의 변형거동 평가 (Evaluation of Deformation Behavior of Nuclear Structural Materials under Cyclic Loading Conditions via Cyclic Stress-Strain Test)

  • 김진원;김종성;권형도
    • 한국압력기기공학회 논문집
    • /
    • 제13권1호
    • /
    • pp.75-83
    • /
    • 2017
  • This study investigated deformation behavior of major nuclear structural materials under cyclic loading conditions via cyclic stress-strain test. The cyclic stress-strain tests were conducted on SA312 TP316 stainless steel and SA508 Gr.3 Cl.1 low-alloy steel, which are used as materials for primary piping and reactor pressure vessel nozzle respectively, under cyclic load with constant strain amplitude and constant load amplitude at room temperature (RT) and $316^{\circ}C$. From the results of tests, the cyclic hardening and softening behavior, stabilized cyclic stress-strain behavior, and ratcheting behavior of both materials were investigated at both RT and $316^{\circ}C$. In addition, appropriate considerations for cyclic deformation behavior in the structural integrity evaluation of major nuclear components under excessive seismic condition were discussed.

Assessment of dynamic crushing and energy absorption characteristics of thin-walled cylinders due to axial and oblique impact load

  • Baaskaran, N.;Ponappa, K.;Shankar, S.
    • Steel and Composite Structures
    • /
    • 제28권2호
    • /
    • pp.179-194
    • /
    • 2018
  • Reliable and accurate method of computationally aided design processes of advanced thin walled structures in automotive industries are much essential for the efficient usage of smart materials, that possess higher energy absorption in dynamic compression loading. In this paper, most versatile components i.e., thin walled crash tubes with different geometrical profiles are introduced in view of mitigating the impact of varying cross section in crash behavior and energy absorption characteristics. Apart from the geometrical parameters such as length, diameter and thickness, the non-dimensionalized parameters of average forces which control the plastic bending moment for varying thickness has explored in view of quantifying its impact on the crashworthiness of the structure. The explicit finite element code ABAQUS is utilized to conduct the numerical studies to examine the effect of parametric modifications in crash behavior and energy absorption. Also the simulation results are experimentally validated. It is evident that the circular cross-sectional tubes are preferable as high collision impact shock absorbers due to their ability in withstanding axial and oblique impact loads effectively. Furthermore, the specific energy absorption (SEA), crash force efficiency (CFE), plastic bending moment, peak force responses and its impact for optimally tailoring a design to cater the crashworthiness requirements are investigated. The primary outcome of the study is to provide sufficient information on circular tubes for the use of energy absorbers where impact oblique loading is expected.

Welded plate and T-stub tests and implications on structural behavior of moment frame connections

  • Dong, P.;Kilinski, T.
    • Steel and Composite Structures
    • /
    • 제2권1호
    • /
    • pp.35-50
    • /
    • 2002
  • A series of tests on simple-welded plate specimens (SWPS) and T-stub tension specimens simulating some of the joint details in moment frame connections were conducted in this investigation. The effects of weld strength mismatch and weld metal toughness on structural behavior of these specimens were considered under both static and dynamic loading conditions. Finite element analyses were performed by taking into account typical weld residual stress distributions and weld metal strength mismatch conditions to facilitate the interpretation of the test results. The major findings are as follows: (a) Sufficient specimen size requirements are essential in simulating both load transfer and constraint conditions that are relevant to moment frame connections, (b) Weld residual stresses can significantly elevate stress triaxiality in addition to structural constraint effects, both of which can significantly reduce the plastic deformation capacity in moment frame connections, (c) Based on the test results, dynamic loading within a loading rate of 0.02 in/in/sec, as used in this study, premature brittle fractures were not seen, although a significant elevation of the yield strength can be clearly observed. However, brittle fracture features can be clearly identified in T-stub specimens in which severe constraint effects (stress triaxiality) are considered as the primary cause, (d) Based on both the test and FEA results, T-stub specimens provide a reasonable representation of the joint conditions in moment frame connections in simulating both complex load transfer mode and constraint conditions.

반복 축하중 시험을 이용한 연성포장의 소성변형 예측모델 개발 (Development of Rutting Prediction Model of Flexible Pavement using Repetitive Axial Loading Test)

  • Kim, Nakseok
    • 한국재난정보학회 논문집
    • /
    • 제13권4호
    • /
    • pp.491-498
    • /
    • 2017
  • 본 연구의 주 목적은 연성 도로포장의 소성변형 예측모델을 개발하는 것이다. 목적을 수행하기 위하여 다양한 실험실 시험이 수행되었다. 소성변형 량을 측정하기 위하여 측면 구속압을 제공하는 새로운 반복 일축압축시험이 채택되었으며 소성변형 예측모델은 층별-변형률 이론이 적용되었다. 예측모델의 소성계수는 아스팔트 콘크리트 재료의 소성변형시험을 통하여 결정되었다. 본 연구가 수행된 범위내에서 반복 일축압축시험을 통한 연성포장의 소성변형 예측모델이 제안되었다. 제안된 소성변형 예측모델은 연성포장 층 재료의 거동을 적절하게 모사하는 것으로 나타났다.

An Analytical Study on the Gas-Solid Two Phase Flows

  • ;김희동
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2012년도 제38회 춘계학술대회논문집
    • /
    • pp.356-363
    • /
    • 2012
  • This paper addresses an analytical study on the gas-solid two phase flows in a nozzle. The primary purpose is to get recognition into the gas-solid suspension flows and to investigate the particle motion and its influence on the gas flow field. The present study is the primal step to comprehend the gas-solid suspension flow in the convergent-divergent nozzle. This paper try to made a development of an analytical model to study the back pressure ratio, particles loading and the particle diameter effect on gas-solid suspension flow. Mathematical model of gas-solid two phase flow was developed based on the single phase flow models to solve the quasi-one-dimensional mass, momentum equations to calculate the steady pressure field. The influence of particles loading and particle diameter is analyzed. The results obtained show that the suspension flow of smaller diameter particles has almost same trend as that of single phase flow using ideal gas as working fluid. And the presence of particles will weaken the strength of the shock wave; the bigger particle will have larger slip velocity with gas flow. The thrust coefficient is found to be higher for larger particles/gas loading or back pressure ratio, but it also depends on the ambient pressure.

  • PDF

Tailings fluidization under cyclic triaxial loading - a laboratory study

  • Do, Tan Manh;Laue, Jan;Mattson, Hans;Jia, Qi
    • Geomechanics and Engineering
    • /
    • 제29권5호
    • /
    • pp.497-508
    • /
    • 2022
  • Tailings fluidization (i.e., tailings behave as being fluidized) under cyclic loading is one concern during the construction of tailings dams, especially in the shallow tailings layers. The primary goal of this study is to evaluate the responses of tailings under cyclic loadings and the tailings potential for fluidization. A series of cyclic triaxial undrained and drained tests were performed on medium and dense tailings samples under various cyclic stress ratios (CSR). The results indicated that axial strain and excess pore water pressure accumulated over time due to cyclic loading. However, the accumulations were dependent on CSR values, densities, and drainage conditions. The fluidization potential analysis in this study was then evaluated based on the obtained cyclic axial strain and excess pore water pressure. As a result, tailings samples were stable (unfluidized) under small CSR values, and the critical CSR values, where the tailings fluidized, varied depending on the density of tailings samples. Tailings fluidization is triggered as cyclic stress ratios reach critical values. In this study, the critical CSR values were found to be 0.15 and 0.40 for medium and dense samples, respectively.

Experimental analysis of blast loading effects on security check-post

  • Muhammed Rizvan Akram;Ali Yesilyurt
    • Structural Engineering and Mechanics
    • /
    • 제87권3호
    • /
    • pp.273-282
    • /
    • 2023
  • Concrete construction, one of the oldest building practices, is commonly used in all parts of the world. Concrete is the primary building material for both residential and commercial constructions. The challenge of protecting the buildings, hence nation, against the attack of terrorism has raised the importance to explore the understanding of building materials against the explosion. In this research, a security check-post (reinforced concrete frame filled with plain cement concrete) has been chosen to study the behavior of structural elements under blast loading. Eight nitroglycerines-based dynamite blasts with varying amounts of explosive charge, up to 17 kg weight has been carried out at various scale distances. Pressure and acceleration time history records are measured using blast measuring instruments. Security check post after being exposed by explosive loading are photographed to view cracking/failure patterns on the structural elements. It is noted that with the increase of quantity of explosive, the dimensions of spalling and crack patterns increase on the front panels. Simple empirical analyses are conducted using ConWep and other design manuals such as UFC 3-340-02 (2008) and AASTP-1 (2010) for the purpose of comparison of blast parameters with the experimental records. The results of experimental workings are also compared with earlier researchers to check the compatibility of developed equations. It is believed that the current study presents the simple and preliminary procedure for calculating the air blast and ground shock parameters on the structures exposed to blast explosion.

조합하중을 받는 단층 래티스 돔의 안정경계에 관한 연구 (A Study on the Stability Boundaries for Single Layer Latticed Domes under Combined Loads)

  • 한상을;이갑수
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.85-91
    • /
    • 2000
  • The smallest value of the load when the equilibrium condition becomes to be unstable is defined as the buckling load. The primary objective of this paper is to analyse stability boundaries for star dome under combined loads and is to investigate the iteration diagram under the independent loading parameter In numerical procedure of the geometrically nonlinear problems, Arc Length Method and Newton-Raphson iteration method is used to find accurate critical point(bifurcation point and limit point). In this paper independent loading vector is combined as proportional value and star dome was used as numerical analysis model to find stability boundary among load parameters and many other models as multi-star dome and arches were studied. Through this study we can find the type of buckling mode and the value of buckling load.

  • PDF

임플란트의 즉시 기능에 관한 최신 지견 (Immediate Loading of Implants ; Recent Review)

  • 김윤상
    • 구강회복응용과학지
    • /
    • 제21권2호
    • /
    • pp.191-204
    • /
    • 2005
  • Traditionally, the implant treatment require load-free healing period of at least 3 months in the mandible and 6 months in the maxilla. But this long healing period provides patients with the discomfort and economical trouble. Many experiments has been attempted for the outcome of such disadvantage, so recently the immediate loaded implant is getting popularity. Several literature has been published for clinical success of immediate loaded implant. The studies for the success rate of immediate loaded implant in multi-way has been reporting, nevertheless, we don't have yet a probable success. Various studies have been practiced that the advantages and disadvantages associated with immediate loaded implant, and factors that may influence the success of immediate implant, including patient selection, type of bone quality, required implant length, structure of the implant, surgical skill, need for achieving primary stability, control of occlusal force, peri-implant bone activity. The objective of this study is to review the literature related to immediate loading of implants and to discuss factors that may influence this treatment modality, based on scientific evidence.

지진하중에 의한 제어봉구동장치 내진지지판의 비선형 충격해석 (Nonlinear Impact Analysis of CEDM Seismic Cap Plates for Seismic Loading)

  • 강태교;김태형;이대희;최택상
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.435-440
    • /
    • 2004
  • The nonlinear impacts between the Control Element Drive Mechanisms (CEDMs) seismic cap plates installed on the CEDM top of a pressurized water reactor are studied with the dynamically reduced models of the CEDM and Integrated Head Assembly (IHA). It is important to develope nonlinear models considering the gap effects between the plates. In order to simulate impacts, reduced models for the primary structures, such as CEDM and IHA, are developed through simplifying detailed models, and the nonlinear structural analysis is performed under seismic loading conditions. The responses are examined in various gap sizes depending on the reactor operating conditions.

  • PDF