• Title/Summary/Keyword: primary element

Search Result 759, Processing Time 0.03 seconds

Structural Study on Dance Story-Telling (무용의 스토리텔링 구조연구)

  • Kim, Ki-Hwa;Baek, Hyun-Soon
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.1
    • /
    • pp.265-274
    • /
    • 2012
  • This study aims to examine the physical language of dance art's acceptability of the discourse method of story-telling as a narrative discourse system from the view of story-telling of cultural contents. Dance, through the establishment of relationship between dancers and stage art, can form a discourse system with various literary devices including figures of speech, metaphors, and symbols. The argument over manifestation of dance's narrative components in the concept of story-telling is shown as follows; the background as an object can offer time and spatial backgrounds through stage art and the dancers' performance elements; and, for the character, the dancer himself can be the first-person-narrator and possibly makes plane personality descriptions. As for the elements of main affairs of dance, the stage art components present the background of primary motif of incident and the dancer's diverse relationships form conflicts through the correlation of solo dance, duet, and group dance. The plot as a process of developing the main affair is led by actant such as the dancer's mime actions, gestures, facial expressions, etc. The element of dance's revealing narration is the dance art itself and the developing structure of narration is the dance language's own grammar. Choreographers should compose persuasive dance texts to convey stories efficiently through character decisions, their actions, stage art's elements that display the time and spatial backgrounds, and the development of plot, as a narrative discourse of dance.

Effect of Sc Addition on Microstructure, Electrical Conductivity, Thermal Conductivity and Mechanical Properties of Al-2Zn-1Cu-0.3Mg Based Alloy (Al-2Zn-1Cu-0.3Mg합금의 Sc첨가에 따른 미세조직, 전기전도도, 열전도도 및 기계적 특성 변화)

  • Na, Sang-Su;Kim, Yong-Ho;Son, Hyeon-Taek;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.542-549
    • /
    • 2020
  • Effects of Sc addition on microstructure, electrical conductivity, thermal conductivity and mechanical properties of the as-cast and as-extruded Al-2Zn-1Cu-0.3Mg-xSc (x = 0, 0.25, 0.5 wt%) alloys are investigated. The average grain size of the as-cast Al-2Zn-1Cu-0.3Mg alloy is 2,334 ㎛; however, this value drops to 914 and 529 ㎛ with addition of Sc element at 0.25 wt% and 0.5 wt%, respectively. This grain refinement is due to primary Al3Sc phase forming during solidification. The as-extruded Al-2Zn-1Cu-0.3Mg alloy has a recrystallization structure consisting of almost equiaxed grains. However, the as-extruded Sc-containing alloys consist of grains that are extremely elongated in the extrusion direction. In addition, it is found that the proportion of low-angle grain boundaries below 15 degree is dominant. This is because the addition of Sc results in the formation of coherent and nano-scale Al3Sc phases during hot extrusion, inhibiting the process of recrystallization and improving the strength by pinning of dislocations and the formation of subgrain boundaries. The maximum values of the yield and tensile strength are 126 MPa and 215 MPa for the as-extruded Al-2Zn-1Cu-0.3Mg-0.25Sc alloy, respectively. The increase in strength is probably due to the existence of nano-scale Al3Sc precipitates and dense Al2Cu phases. Thermal conductivity of the as-cast Al-2Zn-1Cu-0.3Mg-xSc alloy is reduced to 204, 187 and 183 W/MK by additions of elemental Sc of 0, 0.25 and 0.5 wt%, respectively. On the other hand, the thermal conductivity of the as-extruded Al-2Zn-1Cu-0.3Mg-xSc alloy is about 200 W/Mk regardless of the content of Sc. This is because of the formation of coherent Al3Sc phase, which decreases Sc content and causes extremely high electrical resistivity.

Analysis on the Reduction of Phosphorus Release in River and Lake Sediments through Application of Capping Technology (Capping 기술을 이용한 하천 및 호소 퇴적토의 인 용출 저감 효과 분석)

  • Kim, Seog-Ku;Yun, Sang-Leen
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.11
    • /
    • pp.781-790
    • /
    • 2014
  • Contaminants such as organic matters, nutrients and toxic chemicals in rivers and lakes with a weak flow rate are first removed from the water and accumulated in the sediments. Subsequently, they are released into the water column again, posing direct/indirect adverse effects on the water quality and aquatic ecosystems. In particular, phosphorus is known to accelerate the eutrophication phenomenon when it is released into the water column via physical disturbance and biological/chemical actions as one of important materials that determine the primary production of aquatic ecosystems and an element that is stored mainly in the sediments in the process of material circulation in the body of water. In this study, the effect on reducing phosphorus release in sediments was analyzed by applying different capping materials to lake water, where the effect of aquatic microorganisms is taken into account, and to distilled water, where the effect of microorganisms is excluded. The experimental results showed that capping with chemical materials such as Fe-gypsum and $SiO_2$-gypsum further reduced the phosphorus release by at least 40% compared to the control case. Composite materials like granule gypsum+Sand showed over 50% phosphorus release reduction effect. Therefore, it is determined that capping with chemical materials such as granule-gypsum and eco-friendly materials such as sand is effective in reducing phosphorus release. The changes in phosphorus properties in the sediments before and after capping treatment showed that gypsum input helped to change the phosphorus that is present in lake sediments into apatite-P, a stable form that makes phosphorus release difficult. Based on the above results, it is expected that the application of capping technology will contribute to improving the efficiency of reducing phosphorus release that occurs in river and lake sediments.

Efficiently Development Plan from the User's Need Analysis of the Army Tactical C4I(ATCIS) System (지상전술 C4I(ATCIS)체계 운용자 요구분석을 통한 효율적 발전 방안)

  • Park, Chang-Woon;Yang, Hae-Sool
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.5
    • /
    • pp.246-259
    • /
    • 2008
  • This study was to minimize the trial and error in the primary step of the C4I system(ATCIS) of the each army corps on the front line, and test the economy and efficiency was tested by reviewing related papers and the system characteristics of other countries. The relationship was researched by analyzing the collected survey data and survey data related to the user's requirement level such as the army standards, that is, commonality, timeliness, simplification, automaticity, field availability and viability, multi-stage security and interoperability, unification. The result showed that the C4I system was efficiently operated through the system reliability for the specification of the system and operation manual, maneuverability and security, adaptability of the war field and system support and management, and good education and training about system operation, and less system maintenance and supplementary element. As a result, the development plan confirmed that the continuous operator education and the construction of the maintenance, and the upgrade digitalization(C4ISR+D) with the korean characteristics based on IT of network systems, and system development of the measurement model of the operator performance must be continuously supplemented in the near future.

PERIOD CHANGE OF W UMa TYPE CONTACT BINARY AB And (W UMa형 접촉쌍성 AB And의 주기변화)

  • Jin, Ho;Han, Won-Yong;Kim, Chun-Hwey;Lee, Jae-Woo;Lee, Woo-Baik
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.242-250
    • /
    • 1997
  • The CCD photometric observations of W UMa-type eclipsing binary AB And were made from September 1994 to October 1996. New four primary minimum times were obtained from these observations. The analysis of times of minimum light for AB And confirms other previous studies that the orbital period of AB And have been changing as a form of sinusoidal variation. In this paper, we calculated the new orbital elements with linear and nonlinear quadratic term, and the best fit equation is derived with the assumption that the period variation of AB And changes sinusoidal pattern. From the sinusoidal term of this orbital element, we calculate period variation as 92 years with amplitude of $0.^{d}059$. However this result considering only sinusoidal term, was not satisfied with our recent observations. Thus, by assuming another parabolic period variation with the sinusoidal pattern, we derived the best fit orbital elements. From the quadratic coefficient of this orbital elements, we calculated the secular variation of 0.73 seconds, and from the sinusoidal term, the period variation turned out to be 62.9 years with amplitude of $0.^{d}024$. If we assume only the sinusoidal period variation of AB And, the period has to be decreased within 10 years. However if we consider quadratic term with the sinusoidal period variation of the light elements, the period is expected to be increased. Therefore long-term observations of this binary system are required to confirm this issue.

  • PDF

Analytical Evaluation of Residual Stresses in Dissimilar Metal Weld for Cast Stainless Steel Pipe and Low-Alloy Steel Component Nozzle (스테인리스주강 배관과 저합금강 기기노즐 이종금속용접부 잔류응력의 해석적 평가)

  • Park, June-Soo;Song, Min-Seop;Kim, Jong-Soo;Kim, In-Yong;Yang, Jun-Seog
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.100-100
    • /
    • 2009
  • This paper is concerned with numerical analyses of residual stresses in welds and material's susceptibility to stress corrosion cracking (SCC) for the primary piping system in nuclear power plants: Both the dissimilar metal weld (DMW) for stainless steel to low alloy steel joints and the similar metal weld (SMW) for forged stainless steel to cast stainless steel joints are considered. Thermal elasto-plastic analyses using the finite element method (FEM) are performed to predict residual stresses generated in fabrication welding and its related processes for both the DMW and SMW, including effects of quenching for cast stainless steel piping, machining of the DMW root, and grinding of the SMW root. As a result, the effect of quenching should be included in the evaluation of residual stresses in the SMW for the cast stainless steel piping. It is deemed that residual stresses in both the DMW and SMW would not affect the SCC susceptibility of the welds providing that the welding processes are completed without any weld repair on the inside wall of the joint. However, the grinding process if performed on the safe-end to piping weld, would produce a high level of residual stresses in the inner surface region and thus a stress improvement process (e.g. buffing) should be considered to reduce susceptibilities to SCC.

  • PDF

Sensitivity Analysis of Nozzle Geometry Variables for Estimating Residual Stress in RPV CRDM Penetration Nozzle (원자로 상부헤드 관통노즐의 잔류응력 예측을 위한 노즐 형상 변수 민감도 연구)

  • Bae, Hong Yeol;Oh, Chang Young;Kim, Yun Jae;Kim, Kwon Hee;Chae, Soo Won;Kim, Ju Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.387-395
    • /
    • 2013
  • Recently, several circumferential cracks were found in the control rod drive mechanism (CRDM) nozzles of U.S. nuclear power plants. According to the accident analyses, coolant leaks were caused by primary water stress corrosion cracking (PWSCC). The tensile residual stresses caused by welding, corrosion sensitive materials, and boric acid solution cause PWSCC. Therefore, an exact estimation of the residual stress is important for reliable operation. In this study, finite element simulations were conducted to investigate the effects of the tube geometry (thickness and radius) on the residual stresses in a J-groove weld for different CRDM tube locations. Two different tube locations were considered (center-hole and steepest side hill tube), and the tube radius and thickness variables ($r_o/t$=2, 3, 4) included two different reference values ($r_o$=51.6, t=16.9mm).

Development of Mathematical CAI program Model And Its Application (수학과 CAI프로그램 모형 개발과 적용)

  • 강희태;권연근
    • Education of Primary School Mathematics
    • /
    • v.2 no.1
    • /
    • pp.53-64
    • /
    • 1998
  • Two different CAI programs have been developed to study the affect of CAI element for the types of learners'performance; (i) one is the 'CAI program 1' including the open questions for the fourth grade (the fourth period of the 'Time and Angle' in chapter 3 of the first term) of the mathematics class in the elementary school, and (il) the other is 'CAI program 2' for the existing methods. The fourth grade of Andong Songhyun elementary school has been chosen as the study subjects (243 learners), and the t-test and learners'interview have also been used to analysis the results of CAI programs. The CAI programs have only been used as the control variable. The developed CAI programs have been applied two different learners'groups to investigate the degree of performance among the superior, average, and inferior learners. For the superior group (p<.0023) at the t<3.2268 level and for the average group (p<.0706) at the t<1.8211 level the learner' group using CAI program 1 shows the higher performance compared with the learners' group using the CAI program 2, whereas fur the inferior group (p<.8073) at the t<.2458 level two programs did not show any difference. The learners interviews show that the superior and average groups have an interest for the open problems, whereas the inferior group do not shows an interest for the open problems. Thus, the CAI programs including the open questions (open fields, open evaluation) will be helped to the learners' group with the individual differences. Furthermore, it is expected that the CAI programs including the open questions as the mathematics and the program model of CAI can be used to develope the CAI program in future.

  • PDF

A Study on the Dynamic Strength Analysis of the Hull Girder Among Waves Considering Non-Linear Hydrodynamic forces (선박의 비선형 유체력을 고려한 파랑중 동적 강도 해석법에 관한 연구)

  • Ku-Kyun Shin;Sa-Soo Kim;Sung-Wan Son
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.152-172
    • /
    • 1992
  • The ship sailing among waves are suffered the various wave loads that comes from its motion throughout its life. Because there are dynamic, the analysis of ship structure must be considered as the dynamic problem precisely. In the rationally-based design, the dynamic structural analysis is carried out using dynamic wave loads provided from the results of the ship mouton calculation as the rigid body. This method is based on the linear theory assumed low wave height and small amplitude of motion. But at the rough sea condition, high wave height, relatively ship's depth, is induced the large ship motion, so the ship section configulation below water line is rapidly changed at each time. This results in non-linear problem. Considering above situation in this paper, the strength analysis method is introduced for the hull glider among waves considering non-linear hydrodynamic forces. This paper considers that the overall or primary level of the ship structural dynamic loading and dynamic response provided from the non-linear wave forces, and bottom and bow flare impact forces estimated by momentum slamming theory, in which the ship is idealized as a hollow thin-walled box beam using thin-walled beam theory and the finite element method. This method is applied to 40,000 Ton Double-Skin Tanker and attention is paid to the influence of the response of ship speed, wave length and wave height compared with linear strip theory.

  • PDF

Clinical Experiences of Facial Asymmetries in Zygomaticomaxillary Complex Bone Fracture Patients (관골상악골 복합체 골절 환자에서의 안면 비대칭에 대한 임상경험)

  • Kang, Nak-Heon;Choi, Sang-Mun;Kim, Joo-Hak;Song, Seung-Han;Oh, Sang-Ha
    • Archives of Plastic Surgery
    • /
    • v.38 no.2
    • /
    • pp.161-165
    • /
    • 2011
  • Purpose: Zygomaticomaxillary complex (ZMC) fracture is one of the most common facial injuries after facial trauma. As ZMC composes major facial buttress, it is a key element of the facial contour. So, when we treat these fractures, the operator should have a concern with the symmetry to restore normal appearance and function. But sometimes, unfavorable results may occur. The aim of this study is to analyze the unsatisfied midfacial contour after ZMC fractures reduction retrospectively and to point out the notandum. Methods: 369 patients, treated for fractures of the ZMC were included in the study. After the operation, such as open reduction and internal fixation (ORIF with titanium or absorbable materials), open reduction, and closed reduction, midfacial contour was evaluated with plain films and 3-dimensional computed tomography. And unfavorable asymmetric midfacial contours were correcterd by secondary correction and re-evaluated. Gross photographs were obtained at outpatient clinic. Results: Total of 38 patients had got a facial asymmetry and among of them 24 patients were treated secondary revisional ORIF operations for correction of unfavorable result of after primary reduction. Two of them had received tertiary operations, three patients had got osteotomy more than after one year and six patients had got minor procedures. The etiology of asymmetry were lateral displaced simple fracture of arch (n=2), lateral displaced comminuted fracture of arch (n=6), comminuted arch fracture combined posterior root fracture (n=9), and communited arch and body fracture (n=12), severely contused soft tissue (n=9). After the manipulations outcomes were acceptable. Conclusion: To prevent the asymmetry in ZMC fracture reduction, complete analysis of fracture, choice of appropriate operation technique, consider soft tissue, and secure of zygoma position are important. Especially, we should be more careful about communited fracture of zygomatic body and lateral displacement, root fracture of zygomatic arch. Because they are commom causes that make facial asymmetry. To get optimal result, ensure the definite bony reduction.