• 제목/요약/키워드: primary calvarial osteoblasts cells

검색결과 8건 처리시간 0.021초

조골세포의 분화에 산겨릅나무 추출물이 미치는 영향 (Effect of Acer tegmentosum Maxim. extract on differentiation of osteoblastic Primary calvarial osteoblasts cells)

  • 오태우;심기석;김광연;조원경;박광일;마진열
    • 대한한의학방제학회지
    • /
    • 제25권4호
    • /
    • pp.527-536
    • /
    • 2017
  • Objectives : The present study, to confirm the osteoblast differentiation effects of Acer tegmentosum Maxim. (AT) extract. Methods : In this experiment, cell viability, Alizarin red S assay, and Alkaline phosphatase (ALP) activity with AT extract (50, $100{\mu}g/m{\ell}$). Also, we studied the expression of differentiation regulator with AT extract in primary calvarial osteoblasts cells (pOB). Results : As a result of AT treatment, we determined that AT extract stimulates ALP activity and alizarin red activities in the pOB cells for mineralization for 18 days. Moreover, these factors increasing osteogenic markers such as Runt-related transcription factor2 ($Run{\times}2$), osteocalcin (OC), osteopontin, osterix, smad1, smad5, activating transcription factor4 (ATF4) and collagen type I alpha 1. Conclusions : These results indicate that AT extract have effect on bone through the promotion of osteoblastic differentiation, suggesting that it could be used for the treatment of bone diseases.

Porphyromonas gingivalis 추출물이 마우스 두개골 일차 조골세포의 기능에 미치는 효과 (Effects of Porphyromonas gingivalis extracts on the function of mouse calvarial primary osteoblastic cells)

  • 윤정호;최성호;조규성;채중규;김종관;김창성
    • Journal of Periodontal and Implant Science
    • /
    • 제33권4호
    • /
    • pp.585-597
    • /
    • 2003
  • Porphyromonas gingivalis has been implicated as an important periodontophathic bacterium in the etiology and progression of periodontal diseases. It has been reported that P.gingivalis may mediate periodontal destruction not only directly through its virulence factors, but also indirectly by including complex host mediated inflammatory reponses. The purpose of this study was t o evaluate the effects of P.gingivalis on the bone formation and resorption by osteoblasts. For this purpose, after determining the concentration below which sonicated P.gingivalis extracts (SPEs) have no cytotoxicity on mouse calvarial primary osteoblastic (POB) cells, we investigated the effects of SPEs on the alkaline phosphatase (ALP) activity, matrix metalloproteinase (MMP) expression (MMP-2, -9, 13), and prostaglandin $E_2$ ($PGE_2$) release in POB cells by treatment with SPEs below that concentration. The results were as follows; 1. SPEs showed no cytotoxic effect on POB cells up to a concentration of 1 ${\mu}m$/ml. 2. The treatment with SPEs reduced ALP activity in a dose-dependent manner in POB cells, In addition, when we investigated the effect of SPEs (1 ${\mu}m$/ml) on ALP activity for different exposure periods, statistically significant inhibition of ALP activity was shown at 2 days of exposure, and further significant inhibition occurred by extending the periods of exposure. 3. The treatment with SPEs stimulated the gene expression of MMP-9 in POB cells. 4. The pre-treatment with SPEs increased the amount of $PGE_2$ released in POB cells. In summary, the present study shows that P.gingivalis could inhibit osteogenesis and stimulate bone resorption not only by reducing ALP activity but also by increasing MMP-9 mRNA expression in osteoblasts, possibly through an endogenous $PGE_2$ pathway. In addition, our results suggest that if P.gingivalis affects osteoblasts in early differentiation stage, such effects by P. gingivalis could be irreversible.

백서 태자 두개관세포에서 인삼 사포닌에 의한 MMP-13 mRNA 발현 억제 (Inhibition of MMP-13 mRNA expression by ginseng saponin in fetal rat calvarial cells)

  • 김양이;최득철;김영준
    • Journal of Periodontal and Implant Science
    • /
    • 제35권2호
    • /
    • pp.277-288
    • /
    • 2005
  • There is a potential role of collagenase-3 in alveolar bone loss and periodontal disease progression, we need to develope or find chemotherapeutic drugs or herbal agents which may regulate the expression of MMP-13. Ginseng saponin, one of the major components of Korea ginseng(panax ginseng) root, has many various biologic effects, such as cytotoxic effect, tumoricidal effects, cytokine regulations, and protein biosynthesis effect. The purpose of this study was to determine the effects of Korea red ginseng saponin on MMP-13 gene expression in osteoblasts. The experimental groups were cultured with ginseng saponin in concentration of 1.0, 10, 25, 50, 100, 250 and $500{\mu}g/ml$ for MTT assay. Primary rat calvarial cells were pre-treated for 1 hour with ginseng saponin(100 ${\mu}g/ml$) and then stimulated with $IL-1{\beta}(1.0ng/ml)$ and PTH(10 nM). MMP-13 gene expression was evaluated by RT-PCR. The results were as follows: Ginseng saponin was cytotoxic to osteoblast at concentration exceeding $250{\mu}g/ml$ for longer than 24 hours in tissue culture(p<0.01). In RT-PCR analysis, steady state MMP-13 mRNA levels were increased approximately 350% by $IL-1{\beta}$, and 400% by PTH when normalized to untreated control. $IL-1{\beta}-indued$ MMP-13 mRNA expression was reduced 50% by pretreatment with ginseng saponin. But ginseng saponin didn't inhibit MMP-13 expression from PTH stimulated cells. This results suggest that ginseng saponin Inhibit $IL-1{\beta}-indued$ MMP-13 mRNA expression.

복합 및 유격배양한 섬유모세포가 마우스 두개관 미분화간엽세포의 골세포 분화에 미치는 영향 (INFLUENCE OF CO-CULTURED FIBROBLASTS ON THE DIFFERENTIATION OF MOUSE CALVARIA-DERIVED UNDIFFERENTIATED MESENCHYMAL CELLS IN VITRO)

  • 황유선;김명래
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제28권2호
    • /
    • pp.114-125
    • /
    • 2002
  • This study was designed to evaluate the influence of fibroblasts or connective tissue from mouse oral mucosa on differentiation of neonatal mouse calvaria-derived osteoblasts and mineralization of bone nodules. Primary cell cultures from mouse calvarial osteoblasts and 2-4 passaged fibroblasts from oral mucosa were co-cultured in monolayer cultures, devided into 6 experimental group according to cell density or cell confluency. Osteoblasts were also co-cultured with fibroblasts in $Transwell^{(R)}$ culture plate with different co-cultured period according to osteoblast differentiation. The alkaline phosphatase activity were measured in monolayer cultures and cultures using $Transwell^{(R)}$. The mineralized bone nodules were presented by Von Kossa staining and density of mineralized nodules was measured by image analysis. The connective tissues with or without osteoblast seeding were cultured and examined histologically by Von Kossa and Trichrome Goldner staining. The results were as follows; 1. Prolonged maturation of matrix and delayed mineralization of bone nodules were resulted in monolayer cultures. 2. Co-culture of fibroblast with osteoblast using $Transwell^{(R)}$ during osteoblast proliferation stage stimulated proliferation of osteoblasts and increased alkaline phosphatase activity and mineralization of bone nodules. 3. Co-culture of fibroblast with osteoblast using $Transwell^{(R)}$ during matrix mineralization stage decreased and delayed mineralization of bone nodules. 4. In vitro cultured connective tissue with osteoblast seeding resulted in proliferation of osteoblasts and matrix formation with mineralization.

High Extracellular Calcium Increased Expression of Ank, PC-1 and Osteopontin in Mouse Calvarial Cells

  • Song, Mi-Na;Ryoo, Hyun-Mo;Woo, Kyung-Mi;Kim, Gwan-Shik;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • 제33권1호
    • /
    • pp.33-43
    • /
    • 2008
  • In the process of bone remodeling, mineral phase of bone is dissolved by osteoclasts, resulting in elevation of calcium concentration in micro-environment. This study was performed to explore the effect of high extracellular calcium ($Ca{^{2+}}_e$) on mineralized nodule formation and on the expression of progressive ankylosis (Ank), plasma cell membrane glycoprotein-1 (PC-1) and osteopontin by primary cultured mouse calvarial cells. Osteoblastic differentiation and mineralized nodule formation was induced by culture of mouse calvarial cells in osteoblast differentiation medium containing ascorbic acid and ${\beta}$-glycerophosphate. Although Ank, PC-1 and osteopontin are well known inhibitors of mineralization, expression of these genes were induced at the later stage of osteoblast differentiation during when expression of osteocalcin, a late marker gene of osteoblast differentiation, was induced and mineralization was actively progressing. High $Ca{^{2+}}_e$(10 mM) treatment highly enhanced mRNA expression of Ank, PC-1 and osteopontin in the late stage of osteoblast differentiation but not in the early stage. Inhibition of p44/42 MAPK activation but not that of protein kinase C suppressed high $Ca{^{2+}}_{e^-}$induced expression of Ank, PC-1 and osteopontin. When high $Ca{^{2+}}_e$(5 mM or 10 mM) was present in culture medium during when mineral deposition was actively progressing, matrix calcifiation was significantly increased by high $Ca{^{2+}}_e$. This stimulatory effect was abolished by pyrophosphate (5 mM) or levamisole (0.1-0.5 mM), an alkaline phosphatase inhibitor. In addition, probenecid (2mM), an inhibitor of Ank, suppressed matrix calcification in both control and high $Ca{^{2+}}_{e^-}$treated group, suggesting the possible role of Ank in matrix calcification by osteoblasts. Taken together, these results showed that high $Ca{^{2+}}_e$ stimulates expression of Ank, PC-1 and osteopontin as well as matrix calcification in late differentiation stage of osteoblasts and that p44/42 MAPK activation is involved in high $Ca{^{2+}}_{e^-}$induced expression of Ank, PC-1 and osteopontin.

Extracellular S100A4 negatively regulates osteoblast function by activating the NF-κB pathway

  • Kim, Haemin;Lee, Yong Deok;Kim, Min Kyung;Kwon, Jun-Oh;Song, Min-Kyoung;Lee, Zang Hee;Kim, Hong-Hee
    • BMB Reports
    • /
    • 제50권2호
    • /
    • pp.97-102
    • /
    • 2017
  • Patients with inflammatory bone disease or cancer exhibit an increased risk of fractures and delayed bone healing. The S100A4 protein is a member of the calcium-binding S100 protein family, which is abundantly expressed in inflammatory diseases and cancers. We investigated the effects of extracellular S100A4 on osteoblasts, which are cells responsible for bone formation. Treating primary calvarial osteoblasts with recombinant S100A4 resulted in matrix mineralization reductions. The expression of osteoblast marker genes including osteocalcin and osterix was also suppressed. Interestingly, S100A4 stimulated the nuclear factor-kappaB (NF-${\kappa}B$) signaling pathway in osteoblasts. More importantly, the ex vivo organ culture of mouse calvariae with recombinant S100A4 decreased the expression levels of osteocalcin, supporting the results of our in vitro experiments. This suggests that extracellular S100A4 is important for the regulation of bone formation by activating the NF-${\kappa}B$ signaling pathway in osteoblasts.

Tectorigenin Promotes Osteoblast Differentiation and in vivo Bone Healing, but Suppresses Osteoclast Differentiation and in vivo Bone Resorption

  • Lee, So-Youn;Kim, Gyu-Tae;Yun, Hyung-Mun;Kim, Youn-Chul;Kwon, Il- Keun;Kim, Eun-Cheol
    • Molecules and Cells
    • /
    • 제41권5호
    • /
    • pp.476-485
    • /
    • 2018
  • Although tectorigenin (TG), a major compound in the rhizome of Belamcanda chinensis, is conventionally used for the treatment of inflammatory diseases, its effects on osteogenesis and osteoclastogenesis have not been reported. The objective of this study was to investigate the effects and possible underlying mechanism of TG on in vitro osteoblastic differentiation and in vivo bone formation, as well as in vitro osteoclast differentiation and in vivo bone resorption. TG promoted the osteogenic differentiation of primary osteoblasts and periodontal ligament cells. Moreover, TG upregulated the expression of the BMP2, BMP4, and Smad-4 genes, and enhanced the expression of Runx2 and Osterix. In vivo studies involving mouse calvarial bone defects with ${\mu}CT$ and histologic analysis revealed that TG significantly increased new bone formation. Furthermore, TG treatment inhibited osteoclast differentiation and the mRNA levels of osteoclast markers. In vivo studies of mice demonstrated that TG caused the marked attenuation of bone resorption. These results collectively demonstrated that TG stimulated osteogenic differentiation in vitro, increased in vivo bone regeneration, inhibited osteoclast differentiation in vitro, and suppressed inflammatory bone loss in vivo. These novel findings suggest that TG may be useful for bone regeneration and treatment of bone diseases.

IGF-I으로 처리한 치은 및 치주인대 섬유모세포가 골모세포에 미치는 영향 (The Effect of the IGF-I treated Gingival and Periodontal Ligament Fibroblast on Osteoblasts)

  • 김미정;양원식
    • 대한치과교정학회지
    • /
    • 제31권6호
    • /
    • pp.589-600
    • /
    • 2001
  • 이 연구의 목적은 IGF-I의 골모세포에 대한 직접적 작용효과와 IGF-I이 섬유모세포에 작용된 후 섬유모세포에서 유리된 인자를 포함한 조절 배양액이 골모세포에 어떤 영향을 미치는지에 대해 각각 치주인대 섬유모세포와 치은 섬유모세포를 이용하여 알아본 후, 치조골의 반응을 외적자극과의 사이에서 매개하는 치주인대의 주세포군인 섬유모세포를 통한 IGF-I의 골모세포에 대한 영향을 알아보는 것이다. 이를 위해 치주인대 섬유모세포와 치은 섬유모세포를 6-8주된 백서(Sprague-Dawley rat)에서 채집하고, 골모세포는 태생 21일된 동종백서에서 채집하여 기본배양을 한 후, 각 군을 6군으로 분리하여 $1{\times}10^4$/we11, (1ml/well)세포수로 분주한 골모세포 배양접시에 IGF-I을 1,10,100ng/m1로 각각 농도를 달리하여 그 효과를 알아보았다. 각각의 군은 대조군, IGF-I을 직접 투여한 골모세포 배양군, 치주인대 섬유모세포의 조절배양액을 이용한 골모세포 배양군, IGF-I으로 처리한 치주인대 섬유모세포의 조절배양액을 이용한 골모세포 배양군, 치은 섬유모세포의 조절배양액을 이용한 골모세포 배양군, IGF-I으로 처 리한 치은 섬유모세포의 조절배양액을 이용한 골모세포 배양군이다. 조절배양액은 배양 36시간후(IGF-I 처리후 12시 간 배양 포함) 채집하였고, 마지막으로 IGF-I 및 조절배양액으로 처리한 후에 추가 24시간 배양한 후, Alkaline phoaphatase 활성도, Western blot 을 이용한 BMP발현, MTT를 이용한 세포증식, BCA kit을 이용한 총단백질량 측정, Western blot을 이용한 교원질 합성 계측 및 골결절의 생성을 관찰하였다. 본 연구의 결과는 다음과 같다. 1 Alkaline phosphatase활성은 10, 100ng/m1의 IGF-I으로 처리한 군과 치주인대 섬유모세포의 조절배양액을 이용한 군, IGF-I으로 처리한 치주인대 섬유모세포의 조절배양액을 이용한 군에서 대조군보다 더 높게 나타났다. 10, 100ng/ml의 IGF-I으로 처리한 치주인대 섬유모세포의 조절배양액을 이용한 실험군에서 유의성 있게 높게 나타났다. 2. 100ng/m1농도의 IGF-I으로 직접 처리한 군에서 골모세포증식이 유의성 있게 증가하였다. 3. 총단백질량은 IGF-I투여와 상관없이 대조군, 실험군 모두 유사하였다. 4. 모든 실험군에서 BMP2,4가 발현되었고, 대조군과 유의한 차이는 없었다. 이상의 결과에서 IGF-I의 투여여부와는 상관없이 치주인대 섬유모세포가 유리하는 물질이 골모세포의 활성을 증가시키는 것으로 나타났으며, IGF-I은 고농도일때만 유의성있게 골모세포 활성을 촉진함을 알 수 있었다. 따라서 이 연구를 통하여 치주인대 섬유모세포가 골모세포활성을 촉진 시키는 작용을 가지고 있음이 확인되었다.

  • PDF