• 제목/요약/키워드: primary calibration

검색결과 116건 처리시간 0.025초

레이저 간섭계를 이용한 진동 가속도계의 절대교정 (Primary vibration calibration by laser interferometry)

  • 이두희;이용봉;전병수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1356-1360
    • /
    • 2001
  • A number of calibration methods are described in ISO 16063 (revision of ISO 5347) and they may be used for special purposes. However, the use of a laser interferometer is recommended for primary calibration. This paper introduces the primary vibration calibration by measuring displacement amplitude and frequency using laser interferometry.

  • PDF

LTE 하향링크의 Zadoff-Chu 시퀀스를 이용한 배열 안테나 Calibration 알고리즘 (An Array Antenna Calibration Algorithm Using LTE Downlink Zadoff-Chu Sequence)

  • 손철봉;장재현;양현욱;최승원
    • 디지털산업정보학회논문지
    • /
    • 제9권4호
    • /
    • pp.51-57
    • /
    • 2013
  • Research on calibration of array antenna has become a hot spot in the area of signal processing and it is necessary to obtain the phase mismatch of each antenna channel. This paper presents a new calibration method for an array antenna system. In order to calibrate the phase mismatch of each antenna channel, we used primary synchronization signal (PSS) which exists in LTE downlink frame. Primary synchronization signal (PSS) is based on a Zadoff-Chu sequence which has a good correlation characteristic. By using correlation calculation, we can extract primary synchronization signal (PSS). After extracting primary synchronization signal (PSS), we use it to calibrate and reduce the phase errors of each antenna channel. In order to verify the new array antenna calibration algorithm which is proposed in this paper, we have simulated the proposed algorithm by using MATLAB. The array antenna system consists of two antenna elements. The phase mismatch of first antenna and second antenna is calculated accurately by proposed algorithm in the experiment test. Theory analysis and MATLAB simulation results are shown to verify the calibration algorithm.

ASSESSING CALIBRATION ROBUSTNESS FOR INTACT FRUIT

  • Guthrie, John A.;Walsh, Kerry B.
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1154-1154
    • /
    • 2001
  • Near infra-red (NIR) spectroscopy has been used for the non-invasive assessment of intact fruit for eating quality attributes such as total soluble solids (TSS) content. However, little information is available in the literature with respect to the robustness of such calibration models validated against independent populations (however, see Peiris et al. 1998 and Guthrie et al. 1998). Many studies report ‘prediction’ statistics in which the calibration and prediction sets are subsets of the same population (e. g. a three year calibration validated against a set from the same population, Peiris et al. 1998; calibration and validation subsets of the same initial population, Guthrie and Walsh 1997 and McGlone and Kawano 1998). In this study, a calibration was developed across 84 melon fruit (R$^2$= 0.86$^{\circ}$Brix, SECV = 0.38$^{\circ}$Brix), which predicted well on fruit excluded from the calibration set but taken from the same population (n = 24, SEP = 0.38$^{\circ}$Brix with 0.1$^{\circ}$Brix bias), relative to an independent group (same variety and farm but different harvest date) (n = 24, SEP= 0.66$^{\circ}$ Brix with 0.1$^{\circ}$Brix bias). Prediction on a different variety, different growing district and time was worse (n = 24, SEP = 1.2$^{\circ}$Brix with 0.9$^{\circ}$Brix bias). Using an ‘in-line’ unit based on a silicon diode array spectrometer, as described in Walsh et al. (2000), we collected spectra from fruit populations covering different varieties, growing districts and time. The calibration procedure was optimized in terms of spectral window, derivative function and scatter correction. Performance of a calibration across new populations of fruit (different varieties, growing districts and harvest date) is reported. Various calibration sample selection techniques (primarily based on Mahalanobis distances), were trialled to structure the calibration population to improve robustness of prediction on independent sets. Optimization of calibration population structure (using the ISI protocols of neighbourhood and global distances) resulted in the elimination of over 50% of the initial data set. The use of the ISI Local Calibration routine was also investigated.

  • PDF

레이저 간섭계를 이용한 진동 가속도계 절대교정 시스템 자동화 (Automation of Primary Vibration Calibration System Using Laser Interferometer)

  • 조승일;이용봉;전병수;이종규;이두희
    • 한국소음진동공학회논문집
    • /
    • 제15권11호
    • /
    • pp.1241-1247
    • /
    • 2005
  • An automation of primary vibration calibration system was developed and tested. Using GPIB interface, the console PC make the control of equipments, signal collecting and save measuring results automatically by the instructions in the program by Visual Basic. Several trials of automatic calibration for the accelerometer(ENDEVCO 2270) using this developed system give the reliable results.

부방향 동압력을 이용한 압전형 압력센서의 교정기법 (A Dynamic Calibration Technique for Piezoelectric Sensors Using Negative Going Dynamic Pressure)

  • 김응수
    • 한국군사과학기술학회지
    • /
    • 제12권4호
    • /
    • pp.491-499
    • /
    • 2009
  • The determination of response characteristics for pressure sensors is routinely limited to static calibration against a deadweight pressure standard. The strength of this method is that the deadweight device is a primary standard used to generate precise pressure. Its weakness lies in the assumption that the static and dynamic responses of the sensor in question are equivalent. Differences in sensor response to static and dynamic events, however, can lead to serious measurement errors. Dynamic techniques are required to calibrate pressure sensors measuring dynamic events in milliseconds. In this paper, a dynamic calibration using negative going dynamic pressure is proposed to determine dynamic pressure response for piezoelectric sensors. Sensitivity and linearity of sensor by the dynamic calibration were compared with those by the static calibration. The uncertainty of calibration results and the goodness of fit test of linear regression analysis were presented. The results show that the dynamic calibration is applicable to determine dynamic pressure response for piezoelectric sensors.

A Received Signal Strength-based Primary User Localization Scheme for Cognitive Radio Sensor Networks Using Underlay Model-based Spectrum Access

  • Lee, Young-Doo;Koo, Insoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권8호
    • /
    • pp.2663-2674
    • /
    • 2014
  • For cognitive radio sensor networks (CRSNs) that use underlay-based spectrum access, the location of the primary user (PU) plays an important role in the power control of the secondary users (SUs), because the SUs must keep the minimum interference level required by the PU. Received signal strength (RSS)-based localization schemes provide low-cost implementation and low complexity, thus it is suitable for the PU localization in CRSNs. However, the RSS-based localization schemes have a high localization error because they use an inexact path loss exponent (PLE). Thus, applying a RSS-based localization scheme into the PU localization would cause a high interference to the PU. In order to reduce the localization error and improve the channel reuse rate, we propose a RSS-based PU localization scheme that uses distance calibration for CRSNs using underlay model-based spectrum access. Through the simulation results, it is shown that the proposed scheme can provide less localization error as well as more spectrum utilization than the RSS-based PU localization using the mean and the maximum likelihood calibration.

Pushing precision and accuracy of RR Lyrae variables as distance indicators

  • Bhardwaj, Anupam;Yang, Soung-Chul
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.80.3-81
    • /
    • 2021
  • RR Lyrae variables are excellent distance indicators thanks to their visual magnitude-metallicity relation and well-defined Period-Luminosity Relations (PLRs) at infrared wavelengths. These population II variables together with the tip of the red giant branch provide primary calibration for the first-rung of the population II distance ladder. We will present new empirical calibration of RR Lyrae PLRs at near-infrared wavelengths using our data from the ongoing CFHT-WIRCam RR Lyrae program. We will discuss the systematic uncertainties involved in the calibration of these relations based on the latest Gaia EDR3 parallaxes and the implication for the cosmic distance scale.

  • PDF

고정밀 회전엔코더를 이용한 회전진동 교정시스템 (Calibration System for Angular Vibration Using Precision Rotary Encoder)

  • 남승환;백경민;정완섭
    • 한국음향학회지
    • /
    • 제33권1호
    • /
    • pp.31-39
    • /
    • 2014
  • 본 논문은 고정밀 회전엔코더를 이용한 회전진동 교정시스템의 실현방안을 제안한다. 제안된 시스템과 비교를 위해 한국표준과학연구원의 회전진동 절대교정시스템을 소개하며 회전진동 센서의 교정을 위한 장치와 측정 불확도 모델을 각각 제시한다. 제안된 방법은 회전엔코더의 교정방법에 따라 두 가지 로 나뉘는데 첫 번째는 레이저 간섭계를 이용하여 교정된 엔코더를 사용하는 방법이고, 두 번째는 제조사가 제공하는 성적서를 이용하여 교정 불확도를 평가하는 방법이다. 0.4 ~ 200 Hz의 교정주파수 구간에서 각가속도계를 교정한 결과, 첫 번째 제안된 방법은 절대교정시스템을 기준으로 감도 차이가 0.1 % 그리고 위상 차이는 $0.01^{\circ}$이내였으며 최대 확장불확도 진폭은 0.6 % 그리고 위상은 $0.4^{\circ}$ 이었다. 두 번째 제안된 방법은 절대교정시스템을 기준으로 감도차이가 진폭은 0.1 % 그리고 위상차이는 $0.6^{\circ}$ 이내였으며 최대 확장불확도는 진폭 4.8 % 와 위상 $2.8^{\circ}$이었다.

In Orbit Radiometric Calibration Tests of COMS MI Infrared Channels

  • Jin, Kyoung-Wook;Seo, Seok-Bae
    • 대한원격탐사학회지
    • /
    • 제27권3호
    • /
    • pp.369-377
    • /
    • 2011
  • Since well-calibrated satellite data is critical for their applications, calibration and validation of COMS science data was one of the key activities during the IOT. COMS MI radiometric calibration process was divided into two phases according to the out-gassing of the sensor: calibrations of the visible (VI) and infrared (IR) channels. Different from the VIS calibration, the calibration steps for the IR channels followed additional processes to secure their radiometric performances. Primary calibration steps of the IR were scan mirror emissivity correction, midnight effect compensation, slope averaging and 1/f noise compensation after a nominal calibration. First, the scan mirror emissivity correction was conducted to compensate the variability of the scan mirror emissivity driven by the coating material on the scan mirror. Second, the midnight effect correction was performed to remove unreasonable high spikes of the slope values caused by the excessive radiative sources during the local midnight. After these steps, the residual (difference between the previous slope and the given slope) was filtered by a smoothing routine to eliminate the remnant random noises. The 1/f noise compensation was also carried out to filter out the lower frequency noises caused from the electronics in the Imager. With through calibration processes during the entire IOT period, the calibrated IR data showed excellent performances.

DESIGN AND DEVELOPMENT OF THE COMPACT AIRBORNE IMAGING SPECTROMETER SYSTEM

  • Lee, Kwang-Jae;Yong, Sang-Soon;Kim, Yong-Seung
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.118-121
    • /
    • 2007
  • In recent years, the hyperspectral instruments with high spatial and high spectral resolution have become an important component of wide variety of earth science applications. The primary mission of the proposed Compact Airborne Imaging Spectrometer System (CAISS) in this study is to acquire and provide full contiguous spectral information with high quality spectral and spatial resolution for advanced applications in the field of remote sensing. The CAISS will also be used as the vicarious calibration equipment for the cross-calibration of satellite image data. The CAISS consists of six physical units: the camera system, the Jig, the GPS/INS, the gyro-stabilized mount, the operating system, and the power inverter and distributor. Additionally, the calibration instruments such as the integrated sphere and spectral lamps are also prepared for the radiometric and spectral calibration of the CAISS. The CAISS will provide high quality calibrated image data that can support evaluation of satellite application products. This paper summarizes the design, development and major characteristic of the CAISS.

  • PDF