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Abstract 
 

For cognitive radio sensor networks (CRSNs) that use underlay-based spectrum access, the 
location of the primary user (PU) plays an important role in the power control of the secondary 
users (SUs), because the SUs must keep the minimum interference level required by the PU. 
Received signal strength (RSS)-based localization schemes provide low-cost implementation 
and low complexity, thus it is suitable for the PU localization in CRSNs. However, the 
RSS-based localization schemes have a high localization error because they use an inexact 
path loss exponent (PLE). Thus, applying a RSS-based localization scheme into the PU 
localization would cause a high interference to the PU. In order to reduce the localization error 
and improve the channel reuse rate, we propose a RSS-based PU localization scheme that uses 
distance calibration for CRSNs using underlay model-based spectrum access. Through the 
simulation results, it is shown that the proposed scheme can provide less localization error as 
well as more spectrum utilization than the RSS-based PU localization using the mean and the 
maximum likelihood calibration. 
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1. Introduction 

Due to the spectrum scarcity and the needs for more intelligent communication systems in 
wireless environments, cognitive radio (CR) technology has recently received considerable 
attention because it can improve spectrum utilization and support high adaptability to dynamic 
wireless environments [1-3]. In many cases, the licensed bands used by the primary user (PU) 
that has the license are underutilized from 15% to 85% with regard to time and space. CR 
technology can enable a secondary user (SU) to opportunistically access an unused portion of 
the licensed bands. In regard to the methods for opportunistic spectrum access that improve 
spectrum utilization, CR technology can be categorized into the following two approaches 
[4-6]: i) the overlay approach, in which the SUs identify an unused portion of the licensed 
bands through the spectrum sensing process and opportunistically access the available 
spectrums for data transmission; ii) the underlay approach, in which the communication of the 
SUs coexists with that of the PUs on the same channel, and the SUs avoid interfering with the 
communication of the PUs by using power control such as the interference temperature limit 
(ITL) [7-9]. 

CR sensor networks (CRSNs) have a PU detection problem similar to the hidden terminal 
problem that commonly occurs in the wireless sensor networks (WSNs); this is one of the 
critical issues in spectrum sensing and spectrum decision of CR technology, and it is referred 
to as the hidden receiver problem [10,11]. Since PU receivers have no duty to announce their 
reception to SU transmitters, CRSNs cannot combat this problem without sharing local and 
global information on the detection of the PUs. Hence, CRSNs need to be a network based on 
either fusion centers or clusters. Such an approach has been studied in cooperative spectrum 
sensing (CSS) research [12-15]. 

To use the underlay approach in CSS-based CRSNs, a fusion center (FC) may need 
location information on the PUs. Unlike the overlay approach, the location of the PUs plays an 
important role for power control in the underlay approach because the core of the underlay 
approach involves keeping the minimum interference level required by the PUs. Hence, the 
location information on the PUs can help the SUs use more much portions of the licensed 
bands without interference with the communication of the PUs, in which the SUs have to be 
able to adjust their transmission power. 

In the context of implementing a localization scheme in CRSNs, the use of received signal 
strength (RSS)-based localization schemes can be a good choice for estimating the PU 
location because it can provide the implementations with low-cost of size, deployment, power 
consumption, communication range, computation, and etc., which are required as the 
characteristics of CRSNs. However, the RSS-based localization schemes have a high 
localization error because they use an inexact path loss exponent (PLE). In general, the PLE in 
the RSS-based localization schemes is considered a fixed value, but in reality, the PLE varies 
over the network. Thus, the RSS-based localization schemes that use a fixed PLE are not 
suitable for PU localization. 

In this study, we propose a RSS-based PU localization scheme that uses distance 
calibration to reduce the localization error and to improve the channel reuse rate for an 
underlay model-based spectrum access in CRSNs. The rest of this paper is organized as 
follows. In Section 2, the related works are briefly reviewed. In Section 3, the network model 
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is described. In Section 4, the proposed RSS-based PU localization scheme is presented. The 
simulation results are shown in Section 5. Finally, the conclusions are given in Section 6. 

2. Related Work 
The recent literatures of the RSS-based localization can be largely classified into two trends: i) 
the RSS-based localization scheme with PLE knowledge of wireless environment, which 
means an exact PLE is given or the PLE is locally identical; ii) the RSS-based localization with 
PLE estimation, which considers a PLE calibration approach. Specifically, in the cases of the 
former, Yi et al. [16] dealt with the PLE as a fixed parameter in WSNs because they assumed 
the physical environment is in stationary. Similarly, Nazar et al. [17] used the least square 
method to obtain the PU location in CRNs, where they considered the identical PLE between 
the PU and all the SUs that detect the PU on the channel. Praful et al. [18] regarded the PLE as 
locally the same in CRNs where consists of some areas with different PLE. These schemes 
above have two main problems: i) the schemes cannot cover the localization errors when the 
structure of the physical environment changes; ii) since the PLE between the PU and the SU in 
practice has variations according to time and space, and the localization error is very sensitive 
to the PLE fluctuations, the schemes may output high localization errors. In the cases of the 
latter, Cong et al. [19] and Hoang et al. [20] considered the linearity of the PLEs between the 
unknown node and the anchor nodes in WSNs and CRNs, respectively. However, the 
assumption of the linearity has the problem that can be ensured only in the particular 
environment. Junho et al. [21] used an iterative PLE estimation method targeting a fixed PLE. 
Thus, if the fixed PLE has variations, the convergence time of the iterative method may largely 
increase. In addition to [21], the authors also considered the linearity of the PLEs similar to 
[19,20]. Hence, the localization scheme in [21] will encounter the same problem. Qun et al. 
[22] exploited the curve fitting method for estimating the PLE, based on the big data of the 
RSS indicators (RSSI) from the actual environment. Thus, this approach may not be able to 
reflect the actual PLE state as the structure of the actual environment quickly changes. 

3. Network Model 
In this section, we describe the network model considered in this paper. The following 
assumptions are made on the PU and the SU networks: the licensed band for the PUs is divided 
into N channels; consequently, the number of the PUs is a maximum of N; the SU network is 
considered as a CRSN based on CSS, thus there is a fusion center (FC) that schedules 
spectrum sensing, collects the local sensing data, and determines whether the channels are 
available for the SUs or not; each SU has the ability to know its own location. 

Fig. 1 illustrates the network model considered in the paper. All the SUs periodically 
perform spectrum sensing according to a sensing schedule given by the FC, and report their 
local sensing data to the FC on a pre-determined control channel. The FC sorts N channels into 
available and unavailable channels, based on the reports. Then, for available channels, the FC 
conducts channel assignments for the SUs in the overlay approach, while unavailable channels 
are dealt with in the underlay approach where they can be reused through power control only if 
there is no harmful interference to the PUs that use the same channel. The FC utilizes a 
RSS-based PU localization scheme using distance calibration to estimate the location of the 
PUs for unavailable channels, and then checks whether there are the SUs that can reuse the 
unavailable channels according to a given rule. 
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Fig. 1. Network model 

 
The signal propagation model for the RSS-based PU localization is built up as follows: for 

efficient localization performance analysis of the signal propagation, we consider a stochastic 
model of an average RSS value, as expressed in [23]: 
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where d  is the distance between a transmitter and a receiver; ( )rxP d  is the received power; 

txP  is the transmission power; λ  is the wavelength; and τ  is the path loss exponent. 
Based on the lognormal shadowing model, which is a more practical model because it 

considers the presence of obstacles [24-26], the path loss is defined in decibel (dB) as: 
 

                    ( ) ( ) ( )0 010log /dB dB dBPL d PL d d d Xστ= + ⋅ +                              (2) 
 
where 0d  is the reference distance; ( )dBPL d  and ( )0

dBPL d  are the path loss in dB at the 
distance d  and 0d , respectively; dBXσ  is the Gaussian random variable with mean zero and 
variance 2σ  called the shadowing variance. 

To ensure that a SU does not interfere with the communication of the PU, the SU must 
satisfy the minimum signal-to-interference-plus-noise-ratio (SINR) required by the PU, 
denoted as minγ . Thus, when the i-th SU and a PU coexist on a channel, the SINR of the PU 
should satisfy the inequality: 
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where PUQ  and iQ  are the transmission power of the PU and the i-th SU, respectively; nQ  is 
the noise power; ( )max

real PUPL d  is the path loss in real scale at the PU maximum transmission 

distance max
PUd ; and ( )real

ijPL d  is the path loss at the distance ijd  between the i-th SU and j-th 
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SU, which is a neighbor to the i-th SU. Hence, the non-interfering maximum transmission 
power for the i-th SU can be obtained from: 
 

                      ( ) ( ) ( )( )
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To apply the underlay model into CRSNs, the SU needs the PU knowledge at least on PUQ , 

max
PUd , and minγ , which are usually available in the network. 

4. Proposed RSS-based PU Localization Scheme  
In this section, we propose a RSS-based PU localization scheme using distance calibration in 
order to reduce the localization error and improve the channel reuse rate. As mentioned in 
Section 3, the FC sorts N channels into available and unavailable channels after collecting 
local sensing data reported by the SUs. This sorting operation can be easily performed through 
a pre-defined decision rule such as AND rule, OR rule, or Half Voting rule. Therefore, we 
focus only on applying the underlay approach into the SU network considered in this paper. 

In the subsections below, we will explain how to localize a PU, based on RSS values 
measured from the PU signal. The proposed scheme is summarized as follows: first, all the 
SUs carry out local sensing to detect PU channel occupations according to a sensing schedule 
given by the FC, and send a reporting message to the FC. At this time, the SUs can estimate 
PLEs amongst themselves and their neighbors through the reporting process. The estimated 
PLEs are included in the reporting message. Using the information given in the reporting 
messages, the FC sorts the channels into available and unavailable channels, calculates an 
average PLE and the distances between a PU and the SUs detecting the PU for each 
unavailable channel. Next, the FC performs distance calibration by comparing the calculated 
distance to the PU maximum transmission distance, and calculates the PU locations. Finally, 
the FC searches for the SUs that would not interfere with the communication of the PUs by 
using an adjusted transmission power. 

4.1 Path Loss Exponent Estimation among Neighbors 
While periodically performing local sensing, each SU sends a reporting message (R-MSG), 
which includes information on the local sensing data and its own location, to the FC. If a SU 
detects a PU signal on a sensing channel, the SU adds the RSS value measured from the signal 
into the R-MSG. Since the i-th SU can listen to the R-MSG from the j-th neighbor, the SU can 
estimate the PLE between itself and its neighbors by using: 
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4.2 Distance Calibration 
In order to calculate the distances between a PU and the SUs detecting the PU, the FC should 
choose a temporal PLE (TPLE). Normally, TPLE is chosen as a fixed value in accordance with 
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wireless environments, such as outdoors and indoors. Here, we use an average PLE of the SUs 
detecting a PU occupation on channel n, which is defined by: 
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where nm  is a set of the SUs detecting a PU occupation on channel n; and nM  is the number 
of the elements of the set nm . With TPLE T

inτ , the FC can calculate the distance ind  between 
the i-th SU and the n-th PU by: 
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where inRSS  is a RSS value of the i-th SU for channel n. 

Due to the difference between the actual PLE and TPLE, ind  can exceed the PU maximum 
transmission distance max

PUd , which becomes a major cause that increases the localization error. 
To solve this problem, the distance calibration is used as follows: 
 
Step 1. Check for all of the unavailable channels 
 

maxunavailable . Otherwise skip.For each channel, go to  2 if PU
ind dStep >        (8) 

 
Step 2. Update T

inτ  according to the rule below, and calculate ind  again by using Equation (7). 
After that, go to Step 1. 
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where α  is a constant from 0 to 1. If all the unavailable channels are skipped in Step 1, the 
distance calibration is completed. 

4.3 PU Localization 
Next, the FC calculates the location of the PUs for the unavailable channels using the least 
square (LS) method as follows: let ( ),n nx y  be the location of the n-th PU and ( ),i ix y  be the 
location of the i-th SU; then the distance ,i nd  between the i-th SU and the n-th PU can be 
obtained by: 
 

( ) ( )2 2
,i n n i n id x x y y= − + −                                          (10) 

 
Through manipulation of ( )1 ,nm nd  and ( )2 ,nm nd , we can obtain: 
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where ( )nm k  for 1,..., nk M=  is the k-th element of the set nm . 
For nM  SUs, Equation (11) is extended as: 
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Using the LS method, the n-th PU’s estimated location can be obtained as: 
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4.4 Channel Assignment for Reusable Channels 
For the unavailable channels, the FC checks whether there are the SUs that satisfy Equation 
(14). If there exist certain SUs that satisfy the condition of Equation (14), the unavailable 
channels can be reused only for those SUs in the underlay approach. 
 

( )( )max1,..., 1,..., ,arg max min PU
n in iji U j U j iR d d d= = ≠= − +                        (14) 

( )( ) ( )max max1,..., ,subject to min 0, andPU SU
in ij i ijj U j id d d Q d TP= ≠− + > ≤  

 
where U is the number of all the SUs in the CRSN; max

SUTP  is the maximum transmission power 
of the SU; and ( )iQ ⋅  can be obtained from Equation (4). 
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5. Simulation Results 

Some assumptions and settings of the simulation environment are as follows: the whole 
number of the channels allowed for the licensed band is 25; the licensed band is underutilized 
by 25 PUs; the number of the SUs uniformly distributed in a 200 x 200 meter square is 50; 
there is a FC located at point (0,0); and the PLE is randomly changed in a uniform distribution 
pattern with a mean value of 3.85 and a variance of 0.4408. For performance comparisons, we 
consider two RSS-based PU localization schemes. One scheme utilizes the mean (MEAN) 
calibration, which is called MEAN scheme in this paper. In this scheme, a fixed PLE is utilized 
for the RSS-based PU localization, which can be obtained from pre-survey or empirical RSS 
data analysis before localization [17-18]. In the simulation, we consider a mean value of 3.85 
for MEAN scheme. The other scheme utilizes the maximum likelihood (ML) calibration, 
which is called ML scheme. In this scheme, an appropriate PLE will be chosen based on the 
maximum likelihood approach for the RSS-based PU localization by considering the PLEs of 
the SUs that detect the PU [21,27-28]. For the implementation of ML scheme, we adopt the 
averaging way of the PLEs between the SU and its neighbors in which they all are the SUs that 
detect the PU, as in [21]. 
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Fig. 2. Average localization error according to the maximum transmission distance of the PUs. 

 
Fig. 2 shows the average localization error when the maximum transmission distance of 

the PUs increases and the shadowing variance of dBXσ  is given as 1. Here, the localization 
error is defined as the Euclidean distance between the actual PU location and the estimated PU 
location. It is observed that the proposed scheme outperforms the other schemes in all the 
cases and has the lowest variation when the maximum transmission distance of the PUs 
increases. 

Fig. 3 shows the average localization error when the standard deviation of dBXσ  increases 
from 1 to 10 and the maximum transmission distance of the PUs is fixed at 200 meters (m). We 
can find that the performance of the proposed scheme is bounded at about 60 m. This result 
shows that the distance calibration works well under deep noise and can provide a boundary to 
the localization error. 
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Fig. 4 shows the channel reuse rate when the maximum transmission distance of the PUs 
increases and the shadowing variance of dBXσ  is given as 1. Here, the channel reuse rate is 
defined as the ratio between the total number of reusable channels determined by a localization 
scheme and the number of actually reusable channels. All schemes have good performance 
between 50 m and 100 m, although the localization error exceeds one half of the PU maximum 
transmission distance. It is mainly due to the fact that the interference range from the 
localization error is relatively smaller than the entire size of the SU network. It is observed that 
the proposed scheme provides more radio resources than the other schemes for all the cases of 
the PU maximum transmission distance. 
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Fig. 3. Average localization error according to the standard deviation of dBXσ  
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Fig. 4. Channel reuse rate according to the maximum transmission distance of the PUs 
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6. Conclusions 

In this study, we have considered a mixture of the overlay and underlay approach for CRSNs, 
especially on an underlay model-based spectrum access. Since the CSS scheme is applied to 
the network model, a FC that is in charge of scheduling spectrum sensing and accessing for the 
SUs determines whether a channel should be used in the overlay approach or the underlay 
approach. In order to apply the underlay approach into CRSNs requiring low complexity, we 
have proposed a RSS-based PU localization scheme that uses the distance calibration, which 
reduces the localization error and improves the channel reuse rate. The simulation results have 
shown that the proposed scheme outperforms the RSS-based PU localization schemes with the 
MEAN and the ML calibrations, respectively, in terms of the average localization error and the 
channel reuse rate when the PU maximum transmission distance and the standard deviation of 
the shadowing factor increase. 

Acknowledgement 

This research was supported by Basic Science Research Program through the National 
Research Foundation of Korea(NRF) funded by the Ministry of Education 
(2013R1A1A2063779) 

References 
[1] S. Haykin, “Cognitive radio : Brain-empowered wireless communications,” IEEE journals on 

selected areas in communications, vol. 23, no. 2, pp. 201-220, Feb., 2005. Article (CrossRef Link) 
[2] J. Mitola, “Cognitive Radio for flexible mobile multimedia communications,” in Proc. of IEEE 

workshop on Mobile multimedia Comm., pp. 3-10, Nov., 1999. Article (CrossRef Link) 
[3] D. Cabric, S.M. Mishra, and R.W. Brodersen, “Implementation issues in spectrum sensing for 

cognitive radios,” in Proc. of Thirty-Eighth Asilomar Conference on Signals, Systems and 
Computers, vol. 1, pp. 772-776, Nov., 2004. Article (CrossRef Link) 

[4] Zhi Quan, Shuguang Cui, H. Vincent Poor and Ali H. Sayed, “Collaborative Wideband Sensing for 
Cognitive Radios,” IEEE Signal Processing Magazine, vol. 25, no.6, pp. 60-73, 2008.  
Article (CrossRef Link) 

[5] S. Srinivasa, and S.A. Jafar, “The Throughput Potential of Cognitive Radio: A Theoretical 
Perspective,” in Proc. of Fortieth Asilomar Conference on Signals, Systems and Computers, pp. 
221-225, June, 2006. Article (CrossRef Link) 

[6] V.D. Chakravarthy, Z. Wu, A. Shaw, M.A. Temple, R. Kannan and F. Garber, “A General 
Overlay/Underlay Analytic Expression Representing Cognitive Radio Waveform,” in Proc. of 
International Waveform Diversity and Design Conference,  pp. 69-73, June, 2007.  
Article (CrossRef Link) 

[7] “Federal communications commission: spectrum policy task force report”, Federal 
Communications Commission, ET Docket 02-135, Nov., 2002. Article (CrossRef Link) 

[8] T.C. Clancy and W. Arbaugh, “Measuring interference temperature,” in Proc. of Virginia Tech 
Wireless Personal Communications Symposium, June, 2006. Article (CrossRef Link) 

[9] T.C. Clancy, “Achievable capacity under the interference temperature model,” in Proc. of  IEEE 
International Conference on Computer Communications, pp. 794–802, May, 2007.  
Article (CrossRef Link) 

[10] X. Jing and D. Raychaudhuri, “Spectrum co-existence of IEEE 802.11b and 802.16a networks 
using the CSCC etiquette protocol,” in Proc. of First IEEE International Symposium on New 
Frontiers in Dynamic Spectrum Access Networks, pp. 243-250, Nov., 2005.  
Article (CrossRef Link) 

http://dx.doi.org/DOI:10.1109/JSAC.2004.839380
http://dx.doi.org/DOI:10.1109/MOMUC.1999.819467
http://dx.doi.org/DOI:10.1109/ACSSC.2004.1399240
http://dx.doi.org/DOI:10.1109/MSP.2008.929296
http://dx.doi.org/DOI:10.1109/ACSSC.2006.356619
http://dx.doi.org/DOI:10.1109/WDDC.2007.4339382
http://transition.fcc.gov/sptf/reports.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.145.5368
http://dx.doi.org/DOI:10.1109/INFCOM.2007.98
http://dx.doi.org/DOI:10.1109/DYSPAN.2005.1542640


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 8, August 2014                                          2673 

[11] O.B. Akan, O.B. Karli and O. Ergul, “Cognitive radio sensor networks,” IEEE Network, vol. 23, no. 
4, pp. 34–40, 2009. Article (CrossRef Link) 

[12] W. Zhang, R. Mallik and K. Ben Letaief, “Cooperative spectrum sensing optimization in cognitive 
radio networks,” in Proc. of IEEE International Conference on Communications, pp. 3411–3415, 
May, 2008. Article (CrossRef Link) 

[13] A. Ghasemi and E. Sousa, “Collaborative spectrum sensing for opportunistic access in fading 
environments,” in Proc. of First IEEE International Symposium on New Frontiers in Dynamic 
Spectrum Access Networks, pp. 131–136, Nov., 2005. Article (CrossRef Link) 

[14] C. Sun, W. Zhang and K. Letaief, “Cooperative spectrum sensing for cognitive radios under 
bandwidth constraints,” in Proc. of Wireless Communications and Networking Conference, pp. 1-5, 
March, 2007. Article (CrossRef Link) 

[15] S. Mishra, A. Sahai and R. Brodersen, “Cooperative sensing among cognitive radios,” in Proc. of 
IEEE International Conference on Communications, vol. 4, pp. 1658-1663, June, 2006.  
Article (CrossRef Link) 

[16] Yi Xie, Guoming Tang, Daifei Wang, Weidong Xiao, Daquan Tang and Jiuyang Tang, 
“Rethinking of the Uncertainty: A Fault-Tolerant Target-Tracking Strategy Based on Unreliable 
Sensing in Wireless Sensor Networks,” KSII TRANSACTIONS ON INTERNET AND 
INFORMATION SYSTEMS, vol. 6, no. 6, pp. 1496-1521, June, 2012. Article (CrossRef Link) 

[17] Nazar Radhi , Kahtan Aziz, Sofian Hamad and H.S.AL-Raweshidy, “Estimate Primary User 
Localization using Cognitive Radio Networks,” in Proc. of International Conference on 
Innovations in Information Technology, pp. 381-385, 2011. Article (CrossRef Link) 

[18] P. Mankar, S.S. Pathak and R.V. Rajakumar, “A cooperative secondary user localization based 
primary user localization method for cognitive radio networks,” in Proc. of National Conference 
on Communications, pp. 1-5, 2012. Article (CrossRef Link) 

[19] Cong Tran-Xuan and Insoo Koo, “An RSS-Based Localization Scheme Using Direction 
Calibration and Reliability Factor Information for Wireless Sensor Networks,” KSII 
TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, vol. 4, no. 1, pp. 45-61, 
February, 2010. Article (CrossRef Link) 

[20] Hoang Anh and Insoo Koo, “Primary user localization using Bayesian compressive sensing and 
path-loss exponent estimation for cognitive radio networks,” KSII TRANSACTIONS ON 
INTERNET AND INFORMATION SYSTEMS, vol. 7, no. 10, pp. 2338-2356, Oct., 2013.  
Article (CrossRef Link) 

[21] C. Jun-Ho, C. Jae-Kark and Y. Sang-Jo, “Iterative path-loss exponent estimation-based positioning 
scheme in WSNs,” in Proc. of Fourth International Conference on Ubiquitous and Future 
Networks, pp. 23-26, 2012. Article (CrossRef Link) 

[22] Qun CHEN, Hua LIU, Min YU and Hang GUO, “RSSI Ranging Model and 3D Indoor Positioning 
with ZigBee Network,” in Proc. of IEEE/ION Position Location and Navigation Symposium, pp. 
1233-1239, 2012. Article (CrossRef Link) 

[23] T. Rappaport, “Wireless Communication: Principles and Practice,” 2ndEd, Prentice-Hall, 2002. 
Article (CrossRef Link) 

[24] Supachai Phaiboon, “An Empirically Based Path Loss Model for Indoor Wireless Channels in 
Laboratory Building,” in Proc. of IEEE Region 10 Conference on Computers, Communications, 
Control and Power Engineering, pp. 1020-1023, 2002. Article (CrossRef Link) 

[25] K. HyungSeo and K. InSoo, “Beacon Node Based Localization Algorithm Using Received Signal 
Strength(RSS) and Path Loss Calibration for Wireless Sensor Networks,” The Journal of the 
Institute of Webcasting, Internet and Telecommunication, vol. 11, no. 1, pp. 15-21, 2011.  
Article (CrossRef Link) 

[26] A. Taejoon and K. Insoo, “A RSS-Based Localization for Multiple Modes using Bayesian 
Compressive Sensing with Path-Loss Estimation,” The Journal of the Institute of Webcasting, 
Internet and Telecommunication, vol. 12, no. 1, pp. 29-36, 2012. Article (CrossRef Link) 

[27] K. Jihoon, K. Daeyoung and K. Youngsoo, “RSS Self-calibration Protocol for WSN Localization,” 
in Proc. of 2nd International Symposium on Wireless Pervasive Computing, pp. 181-184, Feb. 
2007. Article (CrossRef Link) 

http://dx.doi.org/DOI:10.1109/MNET.2009.5191144
http://dx.doi.org/DOI:10.1109/ICC.2008.641
http://dx.doi.org/DOI:10.1109/DYSPAN.2005.1542627
http://dx.doi.org/DOI:10.1109/WCNC.2007.6
http://dx.doi.org/DOI:10.1109/ICC.2006.254957
http://dx.doi.org/10.3837/tiis.2012.06.002
http://dx.doi.org/DOI:10.1109/INNOVATIONS.2011.5893854
http://dx.doi.org/DOI:10.1109/NCC.2012.6176751
http://dx.doi.org/10.3837/tiis.2010.01.003
http://dx.doi.org/10.3837/tiis.2013.10.001
http://dx.doi.org/DOI:10.1109/ICUFN.2012.6261658
http://dx.doi.org/DOI:10.1109/PLANS.2012.6236979
http://www.amazon.com/Wireless-Communications-Principles-Practice-Edition/dp/0130422320
http://dx.doi.org/DOI:10.1109/TENCON.2002.1180295
http://koreascience.or.kr/article/ArticleFullRecord.jsp?cn=OTNBBE_2011_v11n1_15
http://dx.doi.org/DOI:10.7236/JIWIT.2012.12.1.29
http://dx.doi.org/DOI:10.1109/ISWPC.2007.342597


2674                                              Young-Doo et al.: A Received Signal Strength-based Primary User Localization Scheme 
for Cognitive Radio Sensor Networks Using Underlay Model-based Spectrum Access 

[28] M.R. Gholami, R.M. Vaghefi and E.G. Strom, “RSS-Based Sensor Localization in the Presence of 
Unknown Channel Parameters,” IEEE Transactions on Signal Processing, vol. 61, no. 15, pp. 
3752-3759, 2013. Article (CrossRef Link) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Young-Doo Lee  received the B.E., the M.S., and Ph.D. degrees in School of Electrical 
Engineering from University of Ulsan, Korea, in 2007, 2009, and 2013 respectively. He is 
now research-fellow in University of Ulsan. His current research interests include Cognitive 
Radio, Visible Light Communication and Next Generation Wireless Communication 
Systems. 

 

Insoo Koo received the B.E. degree from the Kon-Kuk University, Seoul, Korea, in 1996, 
and received the M.S. and Ph.D. degrees from the Gwangju Institute of Science and 
Technology (GIST), Gwangju, Korea, in 1998 and 2002, respectively. From 2002 to 2004, 
he was with Ultrafast Fiber-Optic Networks (UFON) research center in GIST, as a research 
professor. For one year from September 2003, he was a visiting scholar at Royal Institute of 
Science and Technology, Sweden. In 2005, he joined University of Ulsan where he is now 
full professor. His research interests include Next Generation Wireless Communication 
Systems and Wireless Sensor Networks. 

 

http://dx.doi.org/DOI:10.1109/TSP.2013.2260330

