• Title/Summary/Keyword: primal problem

Search Result 77, Processing Time 0.028 seconds

Shape Design Sensitivity Analysis for Interface Problem in Axisymmetric Elasticity

  • Choi, Joo-Ho;Lee, Boo-Youn;Han, Jung-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.197-206
    • /
    • 2000
  • A boundary integral equation method in the shape design sensitivity analysis is developed for the elasticity problems with axisymmetric non-homogeneous bodies. Functionals involving displacements and tractions at the zonal interface are considered. Sensitivity formula in terms of the interface shape variation is then derived by taking derivative of the boundary integral identity. Adjoint problem is defined such that displacement and traction discontinuity is imposed at the interface. Analytic example for a compound cylinder is taken to show the validity of the derived sensitivity formula. In the numerical implementation, solutions at the interface for the primal and adjoint system are used for the sensitivity. While the BEM is a natural tool for the solution, more generalization should be made since it should handle the jump conditions at the interface. Accuracy of the sensitivity is evaluated numerically by the same compound cylinder problem. The endosseous implant-bone interface problem is considered next as a practical application, in which the stress value is of great importance for successful osseointegration at the interface. As a preliminary step, a simple model with tapered cylinder is considered in this paper. Numerical accuracy is shown to be excellent which promises that the method can be used as an efficient and reliable tool in the optimization procedure for the implant design. Though only the axisymmetric problem is considered here, the method can be applied to general elasticity problems having interface.

  • PDF

기하학적(幾何學的) 계획법(計劃法)에 의한 수질관리(水質管理) 최적화(最適化) 모델의 해법(解法)에 관(關)한 연구(硏究)

  • Baek, Du-Gwon
    • Journal of Korean Society for Quality Management
    • /
    • v.5 no.1
    • /
    • pp.23-29
    • /
    • 1977
  • Geometric programming is very useful for the solution of certain nonlinear programming problems in which the objective function and the constraints are posynomial expressions. By solving the dual program, it can be obtained that the solution of the primal program of Geometric programming. And, more efficient solution is to form an Augmented program possessing degree of difficult zero. A regional water-quality management problem may involve a multistage constrained optimization with many decision variables. In this problem, especially, appling that solution to it is also useful. This paper is described that : 1) the efficient solution of a water-quality management model formed by Geometric programming and 2) the algorithm developed to apply easily a real system by modifing and simplifing the solution.

  • PDF

Interior Point Methods for Multicommodity Flow Problems (다수상품 흐름문제를 위한 내부점 방법)

  • Lim, Sung-Mook;Seol, Tong-Ryeol;Park, Soon-Dal
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.3
    • /
    • pp.274-280
    • /
    • 2001
  • In this research, we develop a specialized primal-dual interior point solver for the multicommodity flow problems (MCFP). The Castro's approach that exploits the problem structure is investigated and several aspects that must be considered in the implementation are addressed. First, we show how preprocessing techniques for linear programming(LP) are adjusted for MCFP. Secondly, we develop a procedure that extracts a network structure from the general LP formulated MCFP. Finally, we consider how the special structure of the mutual capacity constraints is exploited. Results of comupational comparison between our solver and a general interior point solver are also included.

  • PDF

ADVANCED DOMAIN DECOMPOSITION METHOD BY LOCAL AND MIXED LAGRANGE MULTIPLIERS

  • Kwak, Junyoung;Chun, Taeyoung;Cho, Haeseong;Shin, Sangjoon;Bauchau, Olivier A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.1
    • /
    • pp.17-26
    • /
    • 2014
  • This paper presents development of an improved domain decomposition method for large scale structural problem that aims to provide high computational efficiency. In the previous researches, we developed the domain decomposition algorithm based on augmented Lagrangian formulation and proved numerical efficiency under both serial and parallel computing environment. In this paper, new computational analysis by the proposed domain decomposition method is performed. For this purpose, reduction in computational time achieved by the proposed algorithm is compared with that obtained by the dual-primal FETI method under serial computing condition. It is found that the proposed methods significantly accelerate the computational speed for a linear structural problem.

A robust nonlinear mathematical programming model for design of laterally loaded orthotropic steel plates

  • Maaly, H.;Mahmoud, F.F.;Ishac, I.I.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.2
    • /
    • pp.223-236
    • /
    • 2002
  • The main objective of the present paper is to address a formal procedure for orthotropic steel plates design. The theme of the proposed approach is to recast the design procedure into a mathematical programming model. The objective function to be optimized is the total weight of the structure. The total weight is function of its layout parameters and structural element design variables. Mean while the proposed approach takes into consideration the strength and rigidity criteria in addition to other dimensional constraints. A nonlinear programming model is developed which consists of a nonlinear objective function and a set of implicit/explicit nonlinear constraints. A transformation method is adopted for minimization strategy, where the primal model constrained problem is transformed into a sequence of unconstrained minimization models. The search strategy is based on the well-known Fletcher/Powell algorithm. The finite element technique is adopted for discretization and analysis strategies. Mindlin theory is selected to simulate the finite element model and a selective reduced integration scheme is exploited to avoid a shear lock problem.

Tradeoff between Energy-Efficiency and Spectral-Efficiency by Cooperative Rate Splitting

  • Yang, Chungang;Yue, Jian;Sheng, Min;Li, Jiandong
    • Journal of Communications and Networks
    • /
    • v.16 no.2
    • /
    • pp.121-129
    • /
    • 2014
  • The trend of an increasing demand for a high-quality user experience, coupled with a shortage of radio resources, has necessitated more advanced wireless techniques to cooperatively achieve the required quality-of-experience enhancement. In this study, we investigate the critical problem of rate splitting in heterogeneous cellular networks, where concurrent transmission, for instance, the coordinated multipoint transmission and reception of LTE-A systems, shows promise for improvement of network-wide capacity and the user experience. Unlike most current studies, which only deal with spectral efficiency enhancement, we implement an optimal rate splitting strategy to improve both spectral efficiency and energy efficiency by exploring and exploiting cooperation diversity. First, we introduce the motivation for our proposed algorithm, and then employ the typical cooperative bargaining game to formulate the problem. Next, we derive the best response function by analyzing the dual problem of the defined primal problem. The existence and uniqueness of the proposed cooperative bargaining equilibrium are proved, and more importantly, a distributed algorithm is designed to approach the optimal unique solution under mild conditions. Finally, numerical results show a performance improvement for our proposed distributed cooperative rate splitting algorithm.

Spectrum Leasing and Cooperative Resource Allocation in Cognitive OFDMA Networks

  • Tao, Meixia;Liu, Yuan
    • Journal of Communications and Networks
    • /
    • v.15 no.1
    • /
    • pp.102-110
    • /
    • 2013
  • This paper considers a cooperative orthogonal frequency division multiple access (OFDMA)-based cognitive radio network where the primary system leases some of its subchannels to the secondary system for a fraction of time in exchange for the secondary users (SUs) assisting the transmission of primary users (PUs) as relays. Our aim is to determine the cooperation strategies among the primary and secondary systems so as to maximize the sum-rate of SUs while maintaining quality-of-service (QoS) requirements of PUs. We formulate a joint optimization problem of PU transmission mode selection, SU (or relay) selection, subcarrier assignment, power control, and time allocation. By applying dual method, this mixed integer programming problem is decomposed into parallel per-subcarrier subproblems, with each determining the cooperation strategy between one PU and one SU. We show that, on each leased subcarrier, the optimal strategy is to let a SU exclusively act as a relay or transmit for itself. This result is fundamentally different from the conventional spectrum leasing in single-channel systems where a SU must transmit a fraction of time for itself if it helps the PU's transmission. We then propose a subgradient-based algorithm to find the asymptotically optimal solution to the primal problem in polynomial time. Simulation results demonstrate that the proposed algorithm can significantly enhance the network performance.

Development of Finite Element Domain Decomposition Method Using Local and Mixed Lagrange Multipliers (국부 및 혼합 Lagrange 승수법을 이용한 영역분할 기반 유한요소 구조해석 기법 개발)

  • Kwak, Jun Young;Cho, Hae Seong;Shin, Sang Joon;Bauchau, Olivier A.
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.469-476
    • /
    • 2012
  • In this paper, a finite element domain decomposition method using local and mixed Lagrange multipliers for a large scal structural analysis is presented. The proposed algorithms use local and mixed Lagrange multipliers to improve computational efficiency. In the original FETI method, classical Lagrange multiplier technique was used. In the dual-primal FETI method, the interface nodes are used at the corner nodes of each sub-domain. On the other hand, the proposed FETI-local analysis adopts localized Lagrange multipliers and the proposed FETI-mixed analysis uses both global and local Lagrange multipliers. The numerical analysis results by the proposed algorithms are compared with those obtained by dual-primal FETI method.

Influence of Mechanical Properties of Painting Layers and Priming Methods to Weathering Resistance of Danchung (도막의 기계적 성질과 포수방법이 단청의 내후성에 미치는 영향)

  • Oh, Joon suk;Kawanobe, Wataru
    • Journal of Conservation Science
    • /
    • v.17 s.17
    • /
    • pp.19-32
    • /
    • 2005
  • The exterior of Korean traditional wooden buildings have been painted with Danchung of painting method using glue and pigments. However because of losing traditional techniques and materials through the period of colonization and industrialization, many problems are occurring today. Especially after several years from painting, occurrence of scalings and flakings in painting layer is a serious problem. To improve weathering resistance of painting layer caused by stress from the difference of swelling and shrinkage between painting layer and wood plate, was examined by weathering tests. The stress is due to the hydrophilic property of wood, mechanical properties(tensile property and stress relaxation) of painting layer, and priming methods by various binders such as glue, acrylic emulsion(Primal AC-3444), acrylic resin(Paraloid B-72). Because stress relaxation of acrylic emulsion of which glasf transition temperature is below room temperature$(7^{\circ}C)$ is high, painting layers with acrylic emulsion generate no scalings and flakings and are in the most durable state in all weathering tests. Priming method which starts from low concentration to high concentration, is more effective to improve durability than other priming methods.

  • PDF

"Pool-the-Maximum-Violators" Algorithm

  • Kikuo Yanagi;Akio Kudo;Park, Yong-Beom
    • Journal of the Korean Statistical Society
    • /
    • v.21 no.2
    • /
    • pp.201-207
    • /
    • 1992
  • The algorithm for obtaining the isotonic regression in simple tree order, the most basic and simplest model next to the simple order, is considered. We propose to call it "Pool-the-Maximum-Violators" algorithm (PMVA) in conjunction with the "Pool-Adjacent-Violators" algorithm (PAVA) in the simple order. The dual problem of obtaining the isotonic regression in simple tree order is our main concern. An intuitively appealing relation between the primal and the dual problems is demonstrated. The interesting difference is that in simple order the required number of pooling is at least the number of initial violating pairs and any path leads to the solution, whereas in the simple tree order it is at most the number of initial violators and there is only one advisable path although there may be some others leading to the same solution.o the same solution.

  • PDF