• Title/Summary/Keyword: prim-O-glucosylcimifugin

Search Result 5, Processing Time 0.021 seconds

Antinociceptive Effects of Prim-O-Glucosylcimifugin in Inflammatory Nociception via Reducing Spinal COX-2

  • Wu, Liu-Qing;Li, Yu;Li, Yuan-Yan;Xu, Shi-hao;Yang, Zong-Yong;Lin, Zheng;Li, Jun
    • Biomolecules & Therapeutics
    • /
    • v.24 no.4
    • /
    • pp.418-425
    • /
    • 2016
  • We measured anti-nociceptive activity of prim-o-glucosylcimifugin (POG), a molecule from Saposhnikovia divaricate (Turcz) Schischk. Anti-nociceptive or anti-inflammatory effects of POG on a formalin-induced tonic nociceptive response and a complete Freund's adjuvant (CFA) inoculation-induced rat arthritis pain model were studied. Single subcutaneous injections of POG produced potent anti-nociception in both models that was comparable to indomethacin analgesia. Anti-nociceptive activity of POG was dose-dependent, maximally reducing pain 56.6% with an $ED_{50}$ of 1.6 mg. Rats given POG over time did not develop tolerance. POG also time-dependently reduced serum TNF${\alpha}$, IL-$1{\beta}$ and IL-6 in arthritic rats and both POG and indomethacin reduced spinal prostaglandin E2 ($PGE_2$). Like indomethacin which inhibits cyclooxygenase-2 (COX-2) activity, POG dose-dependently decreased spinal COX-2 content in arthritic rats. Additionally, POG, and its metabolite cimifugin, downregulated COX-2 expression in vitro. Thus, POG produced potent anti-nociception by downregulating spinal COX-2 expression.

Coumarins and Chromones from Angelica genuflexa

  • An, Ren-Bo;Park, Bo-Young;Kim, Jung-Hee;Kwon, Ok-Kyoung;Lee, Joong-Ku;Min, Byung-Sun;Ahn, Kyung-Seop;Oh, Sei-Ryang;Lee, Hyeong-Kyu
    • Natural Product Sciences
    • /
    • v.11 no.2
    • /
    • pp.79-84
    • /
    • 2005
  • Thirteen compounds were isolated from the roots of Angelica genuflexa through repeated silica gel column chromatography. Nine coumarins, isoimperatorin (1), osthol (2), demethylsuberosin (3), oxypeucedanin (4), heraclenin (5), pabulenol (7), umbelliferone (8), oxypeucedanin hydrate (9) and marmesinin (11), and four chromones, hamaudol (6), cimifugin (10), sec-O-glucosylhamaudol (12) and prim-O-glucosylcimifugin (13), were identified by physicochemical and spectroscopic analysis. Among these, compounds 3, 5, 6, 8, 12, and 13 were isolated for the first time from the roots of Angelica genuflexa. These coumarins and chromones were examined for their anticomplement activity. Demethylsuberosin (3) showed a weak anticomplement activity with an $IC_{50}$ value of $390\;{\mu}M$.

Studies on chemical constituents form roots of Angelica koreana

  • An, Ren-Bo;Min, Byung-Sun;Lee, Joong-Ku;Park, Bo-Young;Kim, Tae-Jin;Lee, Hyeong-Kyu
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.197.1-197.1
    • /
    • 2003
  • To investigate biological active constituents from natural products, we have studied the roots of Angelica koreana Max. (Umbelliferae). Fifteen compounds were isolated from the MeOH extract by column chromatography on a silica gel. The compounds were identified as isoimperatorin, oxypeucedanin, oxypeucedanin hydrate, osthol, nodakenin, 2-hydroxy-4-methylacetophenone, cimifugin, falcarindiol, heraclenin, pabulenol, umbelliferone, demethylsuberosin, hamaudol, sec-O-glucosylhamaudol, and prim-O-glucosylcimifugin, respectivelv, by spectroscopic means. Among these, the latter eight compounds were isolated for the first time form this plant.

  • PDF

Screening of Bioconversion Components from Gumiganghwal-tang on Fermentation by Lactobacillus Strains

  • Liang, Chun;Lee, Kwang Jin;Cho, Chang-Won;Ma, Jin Yeul
    • Natural Product Sciences
    • /
    • v.20 no.2
    • /
    • pp.102-106
    • /
    • 2014
  • Gumiganghwal-tang (GMT) is a traditional herbal prescription used for treatment of the common cold, pain, and inflammatory diseases. Variations in the amounts of bioactive components of GMT and GMT fermented with 10 Lactobacillus strains were investigated by high-performance liquid chromatography coupled with diode array detection (HPLC-DAD). Simultaneous qualitative and quantitative analyses of eleven bioactive compounds (prim-O-glucosylcimifugin, liquiritin, cimifugin, baicalin, liquiritigenin, wogonoside, baicalein, wogonin, butylphthalide, imperatorin, and isoimperatorin) were performed, with comparison of their retention times (tR) and UV spectra with those of standard compounds. The amounts of baicalin (8.71 mg/g), liquiritigenin (5.28 mg/g) and butylphthalide (5.10 mg/g) were the major compounds in GMT. We found that L. fermentum KFRI 145 fermented wogonoside and baicalin to their aglycones, wogonin and baicalein, respectively. These results indicated that L. fermentum KFRI 145 has potential as a functional starter culture for manufacturing fermented GMT.

Chemical Constituents of Saposhnikovia divaricata (방풍의 화학 성분)

  • Kim, So-Jun;Chin, Young-Won;Yoon, Kee-Dong;Ryu, Min-Youl;Yang, Min-Hye;Lee, Je-Hyun;Kim, Jin-Woong
    • Korean Journal of Pharmacognosy
    • /
    • v.39 no.4
    • /
    • pp.357-364
    • /
    • 2008
  • The roots of Saposhnikovia divaricata Schischk. (Umbelliferae) have been known to possess analgesic, anti-inflammatory, anti-parasitic and anti-bacterial activities, and used for curing headaches, fever and arthralgia. In this study, we aimed to isolate active constituents to provide phytochemical data for the quality control of this plant. Nine coumarins, eight chromones, three sterols and a coumarolignan were isolated from EtOAc-soluble fraction of the roots of S. divaricata through repetive column chromatography method using silica gel, ODS gel, Sephadex-LH 20, MPLC and HPLC. By analyses of spectroscopic data and comparison of their data with those of published values, the compounds were identified as 3'-O-angeloylhamaudol (1), ${\beta}$-sitosterol (2), marmesin (3), phellopterin (4), anomalin (5), imperatorin (6), xanthotoxin (7), deltoin (8), bergapten (9), stigmasterol (10), ledebouriellol (11), hamaudol (12), 8'-epicleomiscosin A (13), xanthoarnol (14), cimifugin (15), 5-O-methylvisamminol (16), daucosterol (17), 4'-O-${\beta}$-D-glucosyl-5-O-methylvisamminol (18), nodakenin (19), sec-O-glucosylhamaudol (20), prim-O-glucosylcimifugin (21). Among them, 8'-epicleomiscosin (13) was firstly reported from Umbelliferae family and xanthoarnol (14) and nodakenin (19) were isolated from this plant for the first time.