• Title/Summary/Keyword: prevent cracking

Search Result 155, Processing Time 0.026 seconds

A Study on Crack Self-Healing of Concrete Overlay for Bridge Decks (콘크리트 교면포장의 자기균열치유 특성에 대한 검토 연구)

  • Jeon, Sung IL;Yun, Kyung Ku;An, Ji Hwan;Choi, Pan Gil
    • International Journal of Highway Engineering
    • /
    • v.19 no.1
    • /
    • pp.11-19
    • /
    • 2017
  • PURPOSES : The purpose of this study is to verify the property of self-healing, and to propose an appropriate duration for wet curing of bridge deck concrete overlays. METHODS : In this study, reinforced bars were inserted into concrete molds in order to prevent brittle fracture and induced cracks in the concrete resulting from indirect tension mode. The induced time of concrete cracking was 3 to 7 days, following which the concrete specimens were cured in water. The resulting concrete crack width was measured using image analysis equipment. Additionally, the self-healing tests were performed using the following three mixtures: OPC, SFC, and LMC. RESULTS : Concrete mixtures with crack widths of $150{\mu}m$ or lower were completely healed by Day 28. Hydrates of crack fills were found to be the calcium carbonate. CONCLUSIONS : The cement-based mixtures exhibit properties of self-healing. Considering these properties, it is necessary to increase the curing duration of concrete overlays for bridge decks.

Development Trend of Sour Resistant Linepipe Steel and its Sour Characteristics in Welded Joints (내(耐)Sour 라인파이프 강재의 개발동향 및 용접부 Sour특성)

  • Kim, Young-Hune;Song, Woo-Hyun;Koh, Seong-Ung
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.21-25
    • /
    • 2014
  • Oil and gas fields were left unexploited which deemed too deep and sour. New developing markets are emerging in this part and pipe manufacturers need demanding requirements in the combination of sour service requirements with heavier wall thickness required to cope with increasing water depths. Whilst, the strength and fracture toughness needed to meet the strict requirements In order to deliver the optimum sour properties in the final pipe, attention needs to be paid to each stage throughout the process from steel making. The main key during steel making is strengthening, securing mechanical properties and suppression of center segregation by adding proper chemical elements and controlling water cooling and plate rolling. Additionally in welding, it is required to prevent HAZ softening by high heat input during welding of heavy thick pipes and hydrogen assisted cracking in high strength steels with hard phases. In this paper, we introduce markets of sour resistant linepipe steels and in response to this, have a look in the development trend of sour resistant linepipe steels and its sour characteristics in welded joints.

Probabilistic Damage Mechanics Assessment of CANDU Pressure Tube using Genetic Algorithm (유전자 알고리즘을 이용한 CANDU 압력관의 확률론적 손상역학 평가)

  • Ko, Han-Ok;Chang, Yoon-Suk;Choi, Jae-Boong;Kim, Young-Jin;Kim, Hong-Key;Choi, Young-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.192-192
    • /
    • 2008
  • As the lifetime of nuclear power plants (NPPs) reaches design life, the probability for fatal accidents increases. Most of accidents are known to be caused by degradation of mechanical components. Pressure tubes are the most important components in CANDU reactor. They are subjected to various aging mechanisms such as delayed hydride cracking (DHC), irradiation and corrosion, etc. Therefore, the integrity of pressure tube is key concern in CANDU reactor. Up to recently, conventional deterministic approaches have been utilized to evaluate the integrity of components. However, there are many uncertainties to prevent a rational evaluation. The objective of this paper is to assess the failure probability of pressure tube in CANDU. To do this, probability fracture mechanics (PFM) analysis based on the Genetic Algorithm (GA) is performed. For the verification of the analysis, a comparison of the PFM analysis using a commercial code and mathematical method is carried out.

  • PDF

Behavior of Steel Box Girder Bridge According to the Placing Sequences of Concrete Slab (II) (강합성 상자형 교량의 바닥판 타설에 따른 거동 연구(II) - 해석적 연구 및 균열제어 -)

  • Kwak, Hyo Gyoung;Seo, Young Jae;Jung, Chan Mook;Park, Young Ha
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.133-142
    • /
    • 2000
  • This study deals with behavior of steel box girder bridges according to the concrete slab casting sequences and sectional types. The time dependent behavior of bridges caused by the differential setting of slab concrete resulting from time gap for each part of slab deck in a sequential placing method produces is analyzed. In correlation studies between girder section types and placing sequences, time dependent effects of concrete creep and shrinkage are implemented in the analytical model proposed in the previous study. Finally, field recommendations in terms of concrete slump and relative humidity are suggested to prevent early transverse cracking of concrete slabs.

  • PDF

Physical Properties of Linerboard and Corrugated Fiberboard at the Cyclic Condition of Low Humidity (저습도 사이클 조건에서의 라이너지와 골판지의 물성)

  • Youn, Hye-Jung;Lee, Hak-Lae;Chin, Seong-Min;Choi, Ik-Sun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.2 s.120
    • /
    • pp.38-44
    • /
    • 2007
  • The hygroscopic property of paper is important for convertability and end use performance. When the board and corrugated fiberboard are exposed to low relative humidity, a trouble of score (or crease) cracking could occur. In this study, we evaluated the moisture content and mechanical properties of linerboard and corrugated board at the cyclic condition of low humidity to prevent a score crack trouble. As the relative humidity decreased from 50% to 38% and 25%, the moisture content of linerboard decreased about 7% to 6% and 4%. At low humidity, most of mechanical properties were improved except for strain. The linerboard exposed at 25% RH showed a remarkable reduction of strain by 11%. At the same relative humidity, linerboard and corrugated fiberboard showed the different property values depending on moisture hysteresis.

A study on the measurement of cavity pressure and computer simulation (성형조건에 따른 캐비티 내압 측정 및 컴퓨터 모사)

  • Kim, D.W.;Kim, S.Y.;Shin, K.S.;Kim, D.W.;Kim, K.Y.;Lyu, M.Y.
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.163-166
    • /
    • 2008
  • Injection molding operation consists of filling, packing, and cooling phase. The highest pressure is involved during the packing phase among the operation phases. Cavity pressure depends upon velocity to pressure switchover time and magnitude of packing pressure. The cavity pressure is directly related to stress concentration in the cavity of mold. Thus the observation and control of cavity pressure is very important to prevent mold cracking. In this study, cavity pressures were observed for operational conditions using the commercial CAE software,Moldflow. Operational conditions were velocity to pressure switchover time and packing pressure. Cavity pressures were also measured directly during injection molding. Simulation and experimental results showed good agreement.

  • PDF

A Study on Strengthening of PSC Beam by Static Experiment - Glass fiber sheeting and External post-tensioning methods - (PSC 부재의 성능개선기법에 관한 정적 실험 연구 - 유리섬유 부착 공법과 외부 후긴장 보강 공법 -)

  • Kim, Hyun-Ho;Song, Jae-Pil;Kim, Ki-Bong;Chung, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.1
    • /
    • pp.157-163
    • /
    • 2003
  • Recently, the number of Prestressed Concrete(PSC) bridges needed repair and retrofit because of the increase of heavy traffic loads and aging of concrete materials. But there are a few related researches about strengthening PSC bridges. In this study, the practicability of strengthening methods for PSC beam were studied by the static experimental method. PSC beams in length of 6m were made with concrete slabs. Glass fiber sheeting and external post-tensioning methods were used for strengthening PSC beams. Some beams were strengthened after cracks to investigate the applicability for cracked bridges. As a result, there strengthening methods were efficient at increasing the cracking loads and the failure load, to decrease deflection and prevent cracks. In the case of using glass fiber retrofit methods, it should be careful in the anchorage problems for preventing the bonding failure.

Friction Stir Welding of Ferritice Stainless Steel (페라이트계 스테인리스강의 마찰교반접합)

  • Ahn, Byung-Wook;Choi, Don-Hyun;Yeon, Yun-Mo;Jung, Seung-Boo
    • Journal of Welding and Joining
    • /
    • v.32 no.2
    • /
    • pp.14-17
    • /
    • 2014
  • Ferritic stainless steels are widely used in the construction industry and in exhaust manifolds due to their low cost and relatively superior stress corrosion cracking resistance and pitting corrosion resistance compared to austenite stainless steels. Ferritic stainless steels are currently welded by various welding process including gas tungsten arc welding (GTAW), electron resistance welding (ERW) and laser beam welding. However, when these stainless steels are welded by fusion welding, some problems occur in the fusion zone (FZ) and heat affected zone (HAZ). First, the ductility of the weld is reduced due to the grain growth in the FZ and HAZ. Second, as its HAZ is frequently sensitized during welding, corrosion resistance deteriorates in this region due to the Cr depletion zone. To prevent these problems, it is recommended that ferritic stainless steels be welded with a low heat input. In this study, recent researches in the view of friction stir welded ferritic stainless steels are briefly reviewed.

Analysis of Damage Trend for Gas Turbine 1st Bucket Related to the Change of Models (모델 변천에 따른 가스터빈 1단 버켓의 손상경향 분석)

  • Kim, Moon-Young;Park, Sang-Yeol;Yang, Sung-Ho;Choi, Hee-Sook;Ko, Won;Song, Kuk-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.6 s.261
    • /
    • pp.718-724
    • /
    • 2007
  • Some of gas turbine model of 7F-Class has constructed and is operating with units domestically. Non-destructive testing (NDT) is one of the methods being used to inspect damage $1^{st}$ stage bucket and review damage trends. We also analyze damage configuration and microstructure according to material and compare with pape of electric power research institute (EPRI). The damaged mode could be determined by leveraging failure analysis. Especially, configuration uprate of bucket is not only to prevent damage during operation but also avoid domestic manufacturing by the competitors. Modifications were mainly concentrated on surfaces such as cooling hole and bucket tips. Analyzing of bucket damage, the earlier model of 7F-Class used with one cycle with equivalent operation hour (EOH), has various cracking of the bucket surface. Bucket damage of new model is centered on tip area (54%) as analyzed by EPRI research. We conclude that improving bucket configuration would increase repair rate on the bucket tip.

Effects of Surface Deformation on Intergranular Oxidation of Alloy 600 (Alloy 600의 결정립계 산화에 대한 표면 변형의 영향)

  • Ha, Dong Woog;Lim, Yun Soo;Kim, Dong Jin
    • Corrosion Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.138-145
    • /
    • 2020
  • Immersion tests of Alloy 600 were conducted in simulated primary water environments of a pressurized water reactor at 325 ℃ for 10, 100, and 1000 h to obtain insight into effects of surface deformation on internal and intergranular (IG) oxidation behavior through precise characterization using various microscopic equipment. Oxidized samples after immersion tests were covered with polyhedral and filamentous oxides. It was found that oxides were abundant in mechanically ground (MG) samples the most. The number density of surface oxides increased with time irrespective of the method of surface finish. IG oxidation occurred in mechanically polished (MP) and chemically polished (CP) samples with thin internal oxidation layers. However, IG oxidation was suppressed with relatively thick internal oxidation layers in MG samples compared to MP and CP samples, suggesting that MG treatment could increase resistance to primary water stress corrosion cracking (PWSCC) from the standpoint of IG oxidation. As a result, appropriate surface treatment for Alloy 600 could prevent oxygen diffusion into grain boundaries, inhibit IG oxidation, and finally induce its high PWSCC resistance.