• Title/Summary/Keyword: pretreatment process

Search Result 724, Processing Time 0.027 seconds

Effects of propofol-induced autophagy against oxidative stress in human osteoblasts

  • Kim, Eun-Jung;Choi, In-Seok;Yoon, Ji-Young;Park, Bong-Soo;Yoon, Ji-Uk;Kim, Cheul-Hong
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.16 no.1
    • /
    • pp.39-47
    • /
    • 2016
  • Background: Oxidative stress occurs during the aging process and other conditions such as bone fracture, bone diseases, and osteoporosis, but the role of oxidative stress in bone remodeling is unknown. Propofol exerts antioxidant effects, but the mechanisms of propofol preconditioning on oxidative stress have not been fully explained. Therefore, the aim of this study was to evaluate the protective effects of propofol against $H_2O_2$-induced oxidative stress on a human fetal osteoblast (hFOB) cell line via activation of autophagy. Methods: Cells were randomly divided into the following groups: control cells were incubated in normoxia (5% $CO_2$, 21% $O_2$, and 74% $N_2$) without propofol. Hydrogen peroxide ($H_2O_2$) group cells were exposed to $H_2O_2\;(200{\mu}M)$ for 2 h, propofol preconditioning (PPC)/$H_2O_2$ group cells were pretreated with propofol then exposed to $H_2O_2$, 3-methyladenine (3-MA)/PPC/$H_2O_2$ cells were pretreated with 3-MA (1 mM) and propofol, then were exposed to $H_2O_2$. Cell viability and apoptosis were evaluated. Osteoblast maturation was determined by assaying bone nodular mineralization. Expression levels of bone related proteins were determined by western blot. Results: Cell viability and bone nodular mineralization were decreased significantly by $H_2O_2$, and this effect was rescued by propofol preconditioning. Propofol preconditioning effectively decreased $H_2O_2$-induced hFOB cell apoptosis. However, pretreatment with 3-MA inhibited the protective effect of propofol. In western blot analysis, propofol preconditioning increased protein levels of collagen type I, BMP-2, osterix, and TGF-${\beta}1$. Conclusions: This study suggests that propofol preconditioning has a protective effect on $H_2O_2$-induced hFOB cell death, which is mediated by autophagy activation.

Determination of Niacin in Infant Formula by Solid-phase Clean-up and HPLC with Photodiode Array Detector (고체상 정제 및 HPLC/PDA에 의한 영유아식 중 나이아신의 분석)

  • Hong, Jee-Eun;Kim, Mi-Ran;Cheon, Sang-Hee;Chai, Jung-Young;Park, Eun-Ryong;Mun, Chun-Sun;Gwak, In-Shin;Kim, Ok-Hee;Lee, Kwang-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.3
    • /
    • pp.359-363
    • /
    • 2009
  • This study was performed to establish a rapid and simple analytical method for niacin (nicotinic acid and nicotinamide) using HPLC. A pretreatment method for the extraction and clean-up of niacin in infant formula sample and an instrumental condition for HPLC were optimized. Niacin was extracted by 5 mM hexanesulfonate with ultrasonication for 30 min. For the clean-up of the sample, the extract was applied to a HLB cartridge, and then niacin was eluted from the cartridge using 5 mL of 80% methanol after washing with 5 mL of n-hexane. The total recoveries were $83{\sim}104%$ and relative standard deviation were in the range of $1.5{\sim}3.5%$ during the extraction and clean-up process. Niacin was determined by gradient elution with sodium hexanesulfonate/methanol buffer as a mobile phase and a photodiode array detector (260 nm). It showed a high linearity between the content of niacin and the peak area ($r^2$=1.000) in the range of $0.02{\sim}10.0$ mg/L of nicotinic acid and nicotinamide. The detection limit was 0.02 mg/L (0.2 mg/kg in the sample). The method was successfully applied for the determination of niacin in infant formula. Total niacin contents were in the range of $53.5{\sim}140.3$ mg/kg.

Contractile Action of Barium in the Rabbit Renal Artery (가토 신동맥 평활근에서 Barium의 수축작용)

  • Jeon, Byeong-Hwa;Kim, Sahng-Seop;Kim, Se-Hoon;Chang, Seok-Jong
    • The Korean Journal of Physiology
    • /
    • v.24 no.2
    • /
    • pp.293-303
    • /
    • 1990
  • The contractile action of barium $(Ba^{2+})$ was investigated in the arterial strip of rabbit renal artery. The helical strip of isolated renal artery was immersed in the Tris-buffered Tyrode's solution equilibrated with 100% $O_2$ at $37^{\circ}C$ and its isometric tension was measured. $Ba^{2+}-induced$ contraction of arterial strip was dose-dependent and its maximal tension corresponded to $92.1{\pm}4.5%$ of tension by $K^+(100\;mM)$. $Ba^{2+}-induced$ contraction did not show the tachyphylactic phenomenon in the normal Tyrode's solution. $Ba^{2+}$ induced the tonic contraction in the $Ca^{2+}-free$ tyrode's solution and that was increased by the extracellula addition of $Ca^{2+}$. During the repeated exposure of the same dose of $Ba^{2+}\;(10\;mM)$ in the $Ca^{2+}-free$ Tyrode's solution, $Ba^{2+}-induced$ contraction was progressively decreased. Even though the intracellular NE-and caffeine-sensitive $Ca^{2+}$ was depleted, $Ba^{2+}$ induced the tonic contraction. After the pretreatment of lanthnum or verapamil, $Ba^{2+}$ did not induce contraction. $Ba^{2+}-induced$contraction was suppressed by extracellular $K^+$ in the normal Tyrode's solution and that was dependent on $K^+$ concentration. Suppressive effect of $K^+\;(14\;mM)$ on the $Ba^{2+}-induced$ contraction was also dependent on the intracellular $Ca^{2+}$ concentration. From the above resuts, it is suggested that $Ba^{2+}$ activate indirectly the contractile process by promoting the mobilization of intracellular $Ca^{2+}$ and the influx of extracellular $Ca^{2+}$. It is also suggested that action of $Ba^{2+}$ on the $Ca^{2+}-activated$ $K^+$ channel can result in the depolarization of cell membrane in the rabbit renal artery.

  • PDF

Study on the Synthesis Method of Simulated CRUD for Chemical Decontamination in NPPs (원전 화학제염을 위한 모의크러드 제조방법 연구)

  • Kang, Duk-Won;Kim, Jin-Kil;Kim, Kyeong-Sook
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.2
    • /
    • pp.91-97
    • /
    • 2010
  • As nuclear power plants are getting older, interests on a decontaminating process are increasingly attracting more attention. Chemical decontamination is crucial to lower the production of radioactive waste and radiation dose rate. Prior to this, oxidizers and detergents for target material should be chosen so as to decontaminate major systems and components of a nuclear power plant chemically. In order to decontaminate it properly, it is crucial to have information about the chemical composition and crystalline structure of CRUD, analyzing its samples from the target or the decontamination system with components. However, there is no program which enables the extraction of samples directly from the object or the decontamination system with components carrying genuine radioactivity. Therefore, it is limited to samples from corrosion products carrying partial radioactivity as a resource. The composition of CRUD varies considerably depending on refueling cycle because it is closely related to the constituent of basic material. After settling a target, it is crucial to analyze and obtain analytical information about CRUD as a decontamination target. In this paper, various technologies for manufacturing simulated CRUD are introduced as alternatives to unattained samples. A metal oxide or metal hydroxide was used to synthesize simulated cruds having chemical compositions and crystalline stricture similar to the actual one by 12 different methods. CRUD 4(metal oxides in the autoclave vessel) and CRUD 10(metal oxides in a crucible after hydrazing pretreatment)were chosen as the best method for Type 1 and Type 2.respectively. As these CRUD can be synthesized easily without using any specialized equipment or reagents in a short time and in large quantities, they are expected to stimulate the development of decontaminating agents and processes.

Binderless Consolidation of Fine Poly-Si Powders for the Application as Photovoltaic Feedstock (태양전지(太陽電池) 원재료(原材料)로 사용(使用)하기 위한 폴리실리콘 미세분말(微細粉末)의 무점결제(無粘結劑) 성형(成形))

  • Shin, Je-Sik;Kim, Dae-Suk;Kim, Ki-Young;Shon, In-Jin;Moon, Byung-Moon
    • Resources Recycling
    • /
    • v.18 no.1
    • /
    • pp.38-43
    • /
    • 2009
  • In this study, binderless consolidation processes of ultra foe Si powder, by-products of making high purity poly-Si in the current method, were systematically investigated for use as economical solar-grade feedstock. The average diameter of the silicon powder was $7.8{\mu}m$. The main contaminants of the fine silicon powder were $SiO_2$ type oxide and humidity. The chemical pretreatment using the HF solution was observed to be effective for the improvement of the compactability of the silicon powder and the density ratio and the strength of the silicon powder compacts. The yield of the binder-free consolidation process increased by 20% under a vacuum condition. In as-received state, the silicon powder were not pure enough to be used as solar grade feed-stock material. After the dry chemical treatments, a sufficiently high purity above solar-grade was able to be achieved.

Pre-treatment effects on softening of carrot during enzyme immersion process (당근의 전처리 조건에 따른 효소의 연화 효과 비교)

  • Kim, Se-rin;Kim, Sun-min;Chang, Jin-Hee;Han, Jung-Ah
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.3
    • /
    • pp.292-296
    • /
    • 2018
  • Softening effects of enzyme following pre-treatments were examined. Four pre-treatments: raw (R), heat (H), heat and freeze-thawing (HFT), heat and freeze-drying (HFD) were applied to carrot. Subsequently, each treated sample was immersed in 10% celluclast enzyme solution for up to 6 h and then their properties were compared. The minimum and the maximum color change was observed in HFD and H, respectively. R showed no change in hardness after 6 h immersion, indicating that the enzyme did not penetrate the carrot. The number and size of pores were greater in samples undergone HFT or HFD as observed by microstructure analysis using SEM, and HFD caused 99.5% reduction in hardness after 6 h immersion. After 6 h immersion post-HFT or 3 h immersion post-HFD, the hardness was less than $20,000N/m^2$, indicating tongue ingestion was possible, and the samples retained their original shape and easily collapsed by spoon pressing.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Transportation and City Gas: Results of the Field Investigation (고품질화 바이오가스 이용 기술지침 마련을 위한 연구(I): 도시가스 및 수송용 - 현장조사 결과 중심으로)

  • Moon, HeeSung;Kwon, Junhwa;Park, Hoyeon;Jeon, Taewan;Shin, Sunkyung;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.1
    • /
    • pp.77-85
    • /
    • 2019
  • Biogasification is a technology that uses organic wastes to reproduce as environmental fuels containing methane gas. Biogasification has attracted worldwide attention because it can produce renewable-energy and stable land treatment with prohibit from landfilling and ocean dumping of organic waste. Biomethane is produced by refining biogas. It is injected into natural gas pipeline or used transportation fuel such as cars and buses. 90 bio-gasification facilities are operating in 2016, and methane gas production is very low due to it is limited to organic wastes such as food waste, animal manure, and sewage sludge. There are seven domestic biomethane manufacturing facilities, and the use of high value-added such as transport fuels and city-gas through upgrading biogas should be expanded. On the other hand, the rapid biogasification of organic wastes in domestic resulted in frequent breakdowns of facilities and low efficiency problems. Therefore, the problem is improving as technical guidance, design and operational technical guidance is developed and field experience is accumulated. However, while improvements in biogas production are being made, there is a problem with low utilization. In this study, the problems of biomethane manufacturing facilities were identified in order to optimize the production and utilization of biogas from organic waste resources. Also, in order to present the design and operation guideline of the gas pretreatment and the upgrading process, we will investigate precision monitoring, energy balance and economic analysis and solutions for on-site problems by facility.

Distribution and Evaluation of Rare Earth Elements contained in Coal Ashes from Korea Circulating Fluidized Bed Combustion (CFBC) (국내 순환유동층보일러 석탄재의 희토류 분포 특성 및 평가)

  • Kim, Young-Jin;Baek, Chul-Seoung;Seo, Jun-Hyung;Choi, Moon-Kwan;Cho, Kye-Hong;Ahn, Ji-Whan
    • Resources Recycling
    • /
    • v.27 no.6
    • /
    • pp.68-75
    • /
    • 2018
  • The rare earth elements (REE) contents in coal ashes generated from domestic circulating fluidized bed combustion (CFBC) were identified for evaluating the exploitation possibilities for recovering rare earth elements. Total REE contents for all of the samples in this study ranged from 82.2 ~ 311.7 ppm, much lower than the 403.5 ppm given on the average value of world coal ash. As a result of analysis using REE concentration and Outlook coefficient, six types of coal ashes falls in the unpromising area (I). These results suggest that it is difficult to recover rare earth element from coal ashes at this stage. It has been confirmed that to recover rare earth elements in coal ashes, research on the pretreatment and concentration process for critical REE is requirement.

Determination of the Coagulant Injection Methods for Efficient Treatment of Industrial Wastewater (산업폐수의 효율적 처리를 위한 응집제의 주입방법 결정)

  • Park, Se-Jin;Jung, Byung-Gil
    • Journal of the Korean Society for Environmental Technology
    • /
    • v.19 no.6
    • /
    • pp.570-575
    • /
    • 2018
  • The various of raw wastewater inflows to the industrial wastewater treatment plants everyday. This makes it difficult to operate the coagulation and flocculation efficiently as a pretreatment process for the industrial wastewater treatment. Additionally, it causes loads on evaporation and membrane facilities which are the posttreatment and alternative processes. For this reason, this study sampled raw wastewater before and after the NaOH injection. An experiment was conducted to compare the coagulation characteristics according to the methods of coagulant injection (single injection, simultaneous injection, consecutive injection, and inverse injection) aiming at efficient treatment of industrial wastewater. The coagulation experiment was conducted using a jar tester. The TDS removal efficiency by the coagulant injection methods increased in the order of consecutive injection (2.8 %) < single injection (3.9 %) < simultaneous injection(8.1 %) < inverse injection(9.6 %); the TOC removal efficiency grew in the order of single injection (84.3 %) < inverse injection (86.2 %) < consecutive injection (88.6 %) < simultaneous injection (89.1 %); the turbidity removal efficiency grew from single injection (99.7 %) < consecutive injection (99.8 %) ${\fallingdotseq}$ inverse injection (99.8 %) < simultaneous injection (99.9 %). These results show that the simultaneous inorganic coagulant-polymer coagulant injection method was more efficient than the consecutive injection method (inorganic coagulant ${\rightarrow}$ polymer coagulant).

Surface Milling for the Study of Pore Structure in Shale Reservoirs (셰일 저류층 내 공극 구조 연구를 위한 표면 밀링)

  • Park, Sun Young;Choi, Jiyoung;Lee, Hyun Suk
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.419-426
    • /
    • 2020
  • Understanding the pore structure including pore shape and connectivity in unconventional reservoirs is essential to increase the recovery rate of unconventional energy resources such as shale gas and oil. In this study, we found analysis condition to probe the nanoscale pore structure in shale reservoirs using Focused Ion Beam (FIB) and Ion Milling System (IMS). A-068 core samples from Liard Basin are used to probe the pore structure in shale reservoirs. The pore structure is analyzed with different pretreatment methods and analysis condition because each sample has different characteristics. The results show that surface milling by FIB is effective to obtain pore images of several micrometers local area while milling a large-area by IMS is efficient to observe various pore structure in a short time. Especially, it was confirmed that the pore structure of rocks with high content of carbonate minerals and high strength can be observed with milling by IMS. In this study, the analysis condition and process for observing the pore structure in the shale reservoirs is established. Further studies are needed to perform for probing the effect of pore size and shape on the enhancement of shale gas recovery.