DOI QR코드

DOI QR Code

Distribution and Evaluation of Rare Earth Elements contained in Coal Ashes from Korea Circulating Fluidized Bed Combustion (CFBC)

국내 순환유동층보일러 석탄재의 희토류 분포 특성 및 평가

  • Kim, Young-Jin (Department of Research and Development, Korea Institute of Limestone and Advanced Materials) ;
  • Baek, Chul-Seoung (Department of Research and Development, Korea Institute of Limestone and Advanced Materials) ;
  • Seo, Jun-Hyung (Department of Research and Development, Korea Institute of Limestone and Advanced Materials) ;
  • Choi, Moon-Kwan (Department of Research and Development, Korea Institute of Limestone and Advanced Materials) ;
  • Cho, Kye-Hong (Department of Research and Development, Korea Institute of Limestone and Advanced Materials) ;
  • Ahn, Ji-Whan (Center for Carbon Mineralization, Korea Institute of Geoscience and Mineral Resources)
  • 김영진 (한국석회석신소재연구소 연구개발실) ;
  • 백철승 (한국석회석신소재연구소 연구개발실) ;
  • 서준형 (한국석회석신소재연구소 연구개발실) ;
  • 최문관 (한국석회석신소재연구소 연구개발실) ;
  • 조계홍 (한국석회석신소재연구소 연구개발실) ;
  • 안지환 (한국지질자원연구원 탄소광물화적정기술사업단)
  • Received : 2018.07.06
  • Accepted : 2018.10.25
  • Published : 2018.12.28

Abstract

The rare earth elements (REE) contents in coal ashes generated from domestic circulating fluidized bed combustion (CFBC) were identified for evaluating the exploitation possibilities for recovering rare earth elements. Total REE contents for all of the samples in this study ranged from 82.2 ~ 311.7 ppm, much lower than the 403.5 ppm given on the average value of world coal ash. As a result of analysis using REE concentration and Outlook coefficient, six types of coal ashes falls in the unpromising area (I). These results suggest that it is difficult to recover rare earth element from coal ashes at this stage. It has been confirmed that to recover rare earth elements in coal ashes, research on the pretreatment and concentration process for critical REE is requirement.

국내 순환유동층보일러(CFBC)발전소로부터 발생된 석탄재의 희토류 성분, 함량 및 분포특성을 평가하여 희토류 회수 개발 가능성을 검토하였다. 국내 CFBC발전소에서 확보한 6 종 석탄재의 희토류 함량은 82.2 ~ 311.7 ppm으로, 세계 석탄재 희토류 평균값으로 제시된 403.5 ppm에 비해 낮게 확인되었다. 희토류 농도와 Outlook coefficient값을 이용한 분석 결과, 6 종의 석탄재 모두 unpromising area (I)로 분류되었다. 현재 단계에서 석탄재의 희토류 회수를 위한 개발은 어려운 상태임을 확인하였고, 향후 석탄재 중 희토류 성분의 회수를 위해서는 critical 희토류를 주요 대상으로, 이를 농축하기 위한 전처리 및 선별 공정 개발이 필요한 것으로 확인되었다.

Keywords

RSOCB3_2018_v27n6_68_f0001.png 이미지

Fig. 1. REE distribution in coal ashes. ((a) domestic, (b)overseas)7-10,16).

RSOCB3_2018_v27n6_68_f0002.png 이미지

Fig. 2. XRD patterns of coal ashes from Korea CFBC plants.

RSOCB3_2018_v27n6_68_f0003.png 이미지

Fig. 3. REE distribution in coal ashes from Korea CFBC plants.

RSOCB3_2018_v27n6_68_f0004.png 이미지

Fig. 4. Classification of REE in coal ashes from Korea CFBC plants.

RSOCB3_2018_v27n6_68_f0005.png 이미지

Fig. 5. Evaluation of REE in coal ashes from Korea CFBC plants.

Table 1. Samples name of coal ashes used in this study

RSOCB3_2018_v27n6_68_t0001.png 이미지

Table 2. The result of the XRF analysis for coal ashes from Korea CFBC plants

RSOCB3_2018_v27n6_68_t0002.png 이미지

References

  1. H. K. Park et al., 2012 : Overview on the technologies for extraction of rare earth metals, J. of Korean Inst. of Resources Recycling, 21(3), pp.74-83. https://doi.org/10.7844/kirr.2012.21.3.074
  2. M. S. Lee and H. S. Jeon, 2010 : Extractive metallurgy and separation technology of rare earth ores, J. of Korean Inst. of Resources Recycling, 19(6), pp.27-35.
  3. Y. D. Kim and C. S. Ko, 2010 : REE resources and it's utilization, Econ. Envron. Geol., 43(5), pp.505-516.
  4. Y. J. Kim, 2013 : Strategy of critical materials management in the world, J. of Korean Inst. of Resources Recycling, 22(5), pp.3-12. https://doi.org/10.7844/kirr.2013.22.5.3
  5. R. K. Taggart et al., 2016 : Trends in the rare earth element content of U.S.-based coal combustion fly ashes, Environ. Sci, Technol, 50, pp.5919-5926. https://doi.org/10.1021/acs.est.6b00085
  6. V. V. Seredin and S. Dai, 2012 : Coal deposits as potential alternative sources for lanthanides and yttrium, Int. J. Coal. Geol., 94, pp.67-93. https://doi.org/10.1016/j.coal.2011.11.001
  7. W. Franus, M. M. Wiatros-Motyka and M, Wdowin, 2015 : Coal fly as a resource for rare earth elements, Environ Sci Pollut Res, 22, pp.9464-9474. https://doi.org/10.1007/s11356-015-4111-9
  8. S. Dai, I. T. Graham and C. R. Ward, 2016 : A review of anomalous rare earth elements and yttrium in coal, Int. J. Coal. Geol., 159, pp.82-95. https://doi.org/10.1016/j.coal.2016.04.005
  9. M. B. Folgueras, M, Alonso and F. J. Fernandez, 2017 : Coal and sewage sludge ashes as sources of rare earth elements, Fuel, 192, pp.128-139. https://doi.org/10.1016/j.fuel.2016.12.019
  10. R. S. Blissett, N. Smalley and N. A. Rowson, 2014 : An investigation into six coal fly ashes from the United Kingdom and poland to evaluate rare element content, Fuel, 119, pp.236-239. https://doi.org/10.1016/j.fuel.2013.11.053
  11. V. V. Seredin, 2010 : A new method for primary evaluation of the outlook for rare earth element ores, Geol. Ore Deposits, 52(5), pp.428-433. https://doi.org/10.1134/S1075701510050077
  12. R. Lin et al., 2017 : Enrichment of rare earth elements from coal and coal by-products by physical separations, Fuel, 200, pp.506-520. https://doi.org/10.1016/j.fuel.2017.03.096
  13. S. U. Park et al., 2015 : Evaluation of some rare metals and rare earth metals contained in coal ash of coal-fired power plants in Korea, J. of Korean Inst. of Resources Recycling, 24(4), pp.67-75. https://doi.org/10.7844/kirr.2015.24.4.67
  14. J. K. Jang, S. W, Ji and J. W. Ahn, 2017 : Utilization of circulating fluidized bed combustion ash and related specifications for mine backfills, J. of Korean Inst. of Resources Recycling, 26(2), pp.71-79. https://doi.org/10.7844/kirr.2017.26.2.71
  15. J. K. Lee and J. Y. Kim, 2013 : Recovery potential of rare earth elements in coal ashes, J. of Korea Society of Waste Management, 30(1), pp.94-99. https://doi.org/10.9786/kswm.2013.30.1.94
  16. G. Y. Jeong, S. H. Kim and K. J. Kim, 2015 : Rare metal chemistry, microstructures, and mineralogy of coal ash from thermal power plants of Korea, J. Miner. Soc. Korea, 28(2), pp.147-163. https://doi.org/10.9727/jmsk.2015.28.2.147
  17. C. H. Yoon et al., 1996 : Trace elements and rare earth elements in coal fly ash from the samchenpo, seocheon and Youngdong power plants, J. of Korean Society of Mineral and Energy Resources Engineers, 33(2), pp.82-89.
  18. B. Rubio et al., 2008 : Preparation and characterization of carbon-enriched coal fly ash, J. of Environ. Management, 88, pp.1562-1570. https://doi.org/10.1016/j.jenvman.2007.07.027
  19. M. P. Ketris and Ya. E. Yudovich, 2009 : Estimations clarkes for carbonaceous biothes: world averages for trace element contents in black shale and coals, Int. J. Coal. Geol., 78, pp.135-148. https://doi.org/10.1016/j.coal.2009.01.002
  20. C. S. Baek et al., 2015 : A review of desulfurization technology using limestone in circulating fluidized bed bed type power plant, J. of Korean Inst. of Resources Recycling, 24(5), pp.3-14. https://doi.org/10.7844/KIRR.2015.24.5.3
  21. J. C. Hower et al., 2018 : Rare earth element associations in the Kentucky state university stoker ash, Int. J. Coal. Geol., 189, pp.75-82. https://doi.org/10.1016/j.coal.2018.02.022