• Title/Summary/Keyword: pretreatment process

Search Result 730, Processing Time 0.032 seconds

Berberine Prevents Intestinal Mucosal Barrier Damage During Early Phase of Sepsis in Rat through the Toll-Like Receptors Signaling Pathway

  • Li, Guo-Xun;Wang, Xi-Mo;Jiang, Tao;Gong, Jian-Feng;Niu, Ling-Ying;Li, Ning
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • Our previous study has shown berberine prevents damage to the intestinal mucosal barrier during early phase of sepsis in rat through mechanisms independent of the NOD-like receptors signaling pathway. In this study, we explored the regulatory effects of berberine on Toll-like receptors during the intestinal mucosal damaging process in rats. Male Sprague-Dawlay (SD) rats were treated with berberine for 5 d before undergoing cecal ligation and puncture (CLP) to induce polymicrobial sepsis. The expression of Toll-like receptor 2 (TLR 2), TLR 4, TLR 9, the activity of nuclear factor-kappa B ($NF-{\kappa}B$), the levels of selected cytokines and chemokines, percentage of cell death in intestinal epithelial cells, and mucosal permeability were investigated at 0, 2, 6, 12 and 24 h after CLP. Results showed that the tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and interleukin-6 (IL-6) level were significantly lower in berberine-treated rats compared to the control animals. Conversely, the expression level of tight junction proteins, percentage of cell death in intestinal epithelial cells and the mucosal permeability were significantly higher in berberine-treated rats. The mRNA expression of TLR 2, TLR 4, and TLR 9 were significantly affected by berberine treatment. Our results indicate that pretreatment with berberine attenuates tissue injury and protects the intestinal mucosal barrier in early phase of sepsis and this may possibly have been mediated through the TLRs pathway.

Total Utilization of Woody Biomass by Steam Explosion(II) -The Preparation of Carboxymethylcellulose from Exploded Wood- (폭쇄법(爆碎法)을 이용(利用)한 목질계(木質系) biomass의 종합적(綜合的) 이용(利用)(II) -폭쇄재(爆碎材)로부터 Carboxymethyl cellulose의 제조(製造)-)

  • Han, Sang-Yeol;Chang, Jun-Pok;Lee, Jong-Yoon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.30-36
    • /
    • 1994
  • Steam explosion process is one of the most efficient, pretreatment method for the utilization of lignocellulosic biomass. The carbxymethyl-cellulose(CMC) was prepared with steam exploded wood(EXW), pine(Pinus densiflora) and oak(Quercus mongolica), by standard method using isopropyl alcohol and monochloroacetic acid. The range of water solubility of carboxymethylated pine exploded wood was 45.2~66.8 % and those of oak was 60.7~84.7 %. The degree of substitution(D.S) of carboxymethylated pine exploded wood was 0.11~0.33 and oak exploded wood was 0.48~0.76. The color of carboxymethylated pine and oak exploded wood was brown-black. When carboxymethylated EXW was purified by sulfuric acid, the yield of carboxymethylated wood was lower than non-treated one. However, the color was still brown-black although after delignification. In carboxymethylated EXM prepared after delignification, the water solubility and degree of substitution(D.S) of pine were 81.4~95.9 % and 0.71~0.79, and those of oak were 76.2~89.5 % and 0.79~1.05. The values were higher than non-treated. The degree of substitution of purified carboxymethylated wood prepared with delignified EXM, pine and oak were 0.50~0.71 and 0.70~0.88. The color of carboxymethylated wood was white. In carboxymethylated wood preparde after delignification of EXM, swelling ratio and water retention value of pine were 95.9~96.5 and 580.0~751.2, those of oak were 76.2~89.5 and 124.3~307.6.

  • PDF

Modeling of Particle Removal in the Coarse Media of Direct Horizontal-Flow Roughing Filtration (Direct Horizontal-Flow Roughing Filtration의 조립 여상에서의 입자 제거 모델링)

  • Ahn, Hyo-Won;Park, No-Suk;Lee, Sun-Ju;Lee, Kyung-Hyuk;Wang, Chang-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.3
    • /
    • pp.338-347
    • /
    • 2005
  • Horizontal-Flow Roughing Filtration (HRF) is one of altemative pretreatment methods e.g. prior to Slow Sand Filtration (SSF). However, some of its limitations are that the effluent quality drops drastically at higher turbidity (>200 NTU) and at higher filtration rate (>1 m/h). To overcome these drawbacks, we suggested Direct Horizontal-Flow Roughing Filtration (DHRF), which is a modified system of Horizontal-Flow Roughing (HRF) by addition of low dose of coagulant prior to filtration. In this study to optimize the DHRF configuration, a conceptual and mathematical model for the coarse compartment has been developed in analogy with multi-plate settlers. Data from simple column settling test can be used in the model to predict the filter performance. Furthermore, the model developed herein has been validated by successive experiments carried out. The conventional column settling test has been found to be an handy and useful to predict the performance of DHRF for different raw water characteristics (e.g. coagulated or uncoagulated water, different presence of organic matter, etc.) and different inital process conditions (e.g. coagulant dose, mixing time and intensity, etc.). An optimum filter design for the coarse compartment (grain size 20mm) has been found to be of 3 m/h filtration rate with filter length of 4-4.5 m.

Development of Pretreatment and Mixed Culture Processes for Plant Originated Lactic Acid to Produce a Functional Lactic acid Beverage (대두 전처리 공정 및 식물 유래 유산균 혼합 배양에 의한 기능성 유산균 음료 생산기술 개발)

  • Cho, Eun-Kyung;Cho, Hyung-Yong;Kim, Byeong-Cheol;Shin, Hae-Hun;Cho, Seok-Cheol;Kook, Moo-Chang;Pyun, Yu-Ryang
    • The Korean Journal of Food And Nutrition
    • /
    • v.24 no.1
    • /
    • pp.117-123
    • /
    • 2011
  • This study was conducted to establish process conditions for plant-originated lactic acid production using a mixed culture of plant originated lactic acid bacteria, Lactobacillus sakei B2-16, and Lactobacillus plantarum P23, which were isolated from kimchi, and Bacillus subtilis, which was TP6 isolated from Denjang. Soybean medium was pretreated for 10 minutes at $110^{\circ}C$ and hydrolyzed with 0.2%(w/v) cellulase at $55\sim60^{\circ}C$ for at least 2 hrs. The quality of the final fermentation product was influenced by the inoculation ratio of the Lactobacillus sakei B2-16, Lactobacillus plantarum P23, and Bacillus subtilis TP6. The optimum microorganism inoculation ratio was 1:0.7:0.3, Lactobacillus sakei B2-16: Lactobacillus plantarum P23: Bacillus subtilis TP6, respectively. The sensory characteristics of the product were a refreshing sourness and a soft flavor.

Development of Analytical Method for Ambroxol Hydrochloride and Clenbuterol Hydrochloride Formulation in Korean Pharmaceutical Codex (고시수재 의약품 중 암브록솔염산염 및 클렌부테롤염산염 함유 제제의 함량 시험법 개선)

  • Lee, Tae-Woong;Jeong, Rae-Seok;Park, Soo-Jin;Choi, Lan;Shim, Young-Hun;Choi, Bo-Kyung;Kwak, Hyo-Sun
    • YAKHAK HOEJI
    • /
    • v.58 no.3
    • /
    • pp.190-199
    • /
    • 2014
  • The Korean Pharmaceutical Codex (KPC) analytical method of ambroxol hydrochloride and clenbuterol hydrochloride formulation is complicated and needed to carry out multiple processes during the test. To improve the low efficiency of analytical procedure that makes pharmaceutical laboratory consume much time and high cost to conduct the test of this formulation, this study was performed for simplifying the pretreatment process and optimizing conditions of the HPLC assay. The analytical procedure using HPLC was developed to establish analytical specification for ambroxol hydrochloride and clenbuterol hydrochloride formulations. The newly developed analytical method has good linearity ($R^2$ >0.999), specificity, precision (RSD<1.0%) and the recovery ranges of 98.50~101.84% for ambroxol, 98.29~101.35% for clenbuterol syrup and 98.66~101.71% for clenbuterol tablets. The LOQs were 0.204 ${\mu}g/ml$ for ambroxol, 0.021 ${\mu}g/ml$ for clenbuterol syrup and 0.073 ${\mu}g/ml$ for clenbuterol tablets. The new method was performed with commercially available samples to confirm analytical conditions and validated to be suitable for saving time and cost to control the quality of routine manufactured products. This analytical method will be used for revising the monograph of ambroxol hydrochloride and clenbuterol hydrochloride formulation in next supplement of KPC.

Altered Pharmacokinetics and Hepatic Uptake of TBuMA in Ethynylestradio-Induced Cholestasis

  • Hong Soon-Sun;Choi Jong-Moon;Jin Hyo-Eon;Shim Chang-Koo
    • Archives of Pharmacal Research
    • /
    • v.29 no.4
    • /
    • pp.323-327
    • /
    • 2006
  • The objective of this study was to examine the pharmacokinetics of organic cations in intrahepatic cholestatic rats. A pretreatment with $17{\alpha}$-ethynylestradiol was used to induce intrahepatic cholestasis, and tributylmethylammonium (TBuMA) was used as a representative model organic cation. When $[^3H]$TBuMA was intravenously administered, the AUC value for TBuMA was significantly increased by $79\%$ in cholestasis, and its total systemic clearance was consequently decreased by $46\%$. In addition, the in vivo hepatic uptake clearance of TBuMA from the plasma to the liver was decreased by $50\%$ in cholestasis. The concentration of bile salts in plasma was increased by 2.1 fold in cholestatic rats. Since TBuMA forms ion-pair complexes with anionic components such as bile salts, the decreased hepatic uptake of TBuMA in cholestasis may be due to a change in endogenous components, e.g., bile salts in the plasma. In isolated normal hepatocytes, the uptake clearance for TBuMA in the presence of cholestatic plasma was decreased by $20\%$ compared with normal plasma. Therefore, we conclude that the inhibition of the hepatic uptake process by the cholestasis may be in part due to the increased formation of ion-pair complexes of TBuMA with bile salts in the plasma.

Effect of Various Agents on Oral Bacterial Phagocytosis in THP-1 Cells

  • Song, Yuri;Lee, Hyun Ah;Na, Hee Sam;Jin, Chung
    • International Journal of Oral Biology
    • /
    • v.43 no.4
    • /
    • pp.217-222
    • /
    • 2018
  • Phagocytosis is a fundamental process in which phagocytes capture and ingest foreign particles including pathogenic bacteria. Several oral pathogens have anti-phagocytic strategies, which allow them to escape from and survive in phagocytes. Impaired bacteria phagocytosis increases inflammation and contributes to inflammatory diseases. The purpose of this study is to investigate the influences of various agents on oral pathogenic phagocytosis. To determine phagocytosis, Streptococcus mutans, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis were stained with 5-(and-6)-carboxyfluorescein diacetate succinimidyl ester (CFSE), and was measured using flowcytometery and confocal microscopy. The influencing factors on phagocytosis were evaluated through the pretreatment of ROS inhibitor (N-acetyl-L-cysteine (NAC)), lysozyme, potassium chloride (KCI) and adenosine triphosphate (ATP) in THP-1 cells. Expression of pro-inflammatory cytokines was determined by enzyme-linked immunosorbent assay (ELISA). The phagocytosis of various bacteria increased in a MOI-dependent manner. Among the tested bacteria, phagocytosis of P. gingivalis showed the highest fluorescent intensity at same infection time. Among the tested inhibitors, the NAC treatment significantly inhibited phagocytosis in all tested bacteria. In addition, NAC treatment indicated a similar pattern under the confocal microscopy. Moreover, NAC treatment significantly increased the bacteria-induced secretion of $IL-1{\beta}$ among the tested inhibitors. Taken together, we conclude that the phagocytosis occurs differently depending on each bacterium. Down-regulation by ROS production inhibited phagocytosis and lead increased of oral pathogens-associated inflammation.

Remediation of Heavy Metal-Contaminated Soil Within a Military Shooting Range through Physicochemical Treatment (물리화학적 처리를 이용한 군부대 사격장 내 중금속 오염 토양의 정화)

  • Lee, Sang-Woo;Lee, Woo-Chun;Lee, Sang-Hwan;Kim, Soon-Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.5
    • /
    • pp.9-19
    • /
    • 2021
  • This study evaluated the feasibility of combined use of physical separation and soil washing to remediate heavy metals (Pb and Cu) contaminated soil in a military shooting range. The soils were classified into two types based on the level of heavy metal concentrations: a higher contaminated soil (HCS) with Pb and Cu concentrations of 6,243 mg/kg and 407 mg/kg, respectively, and a lower contaminated soil (LCS) with their concentrations of 1,658 mg/kg and 232 mg/kg. Pb level in both soils exceeded the regulatory limit (700 mg/kg), and its concentration generally increased with decreasing soil particle size. However, in some cases, Pb concentrations increased with increasing soil particle size, presumably due to the presence of residues of bullets in the soil matrix. As a pretreatment step, a shaking table was used for physical separation of soil to remove bullet residues while fractionating the contaminated soils into different sizes. The most effective separation and fractionation were achieved at vibration velocity of 296 rpm/min, the table slope of 7.0°, and the separating water flow rate of 23 L/min. The efficiency of ensuing soil washing process for LCS was maximized by using 0.5% HCl with the soil:washing solution mixing ratio of 1:3 for 1 hr treatment. On the contrary, HCS was most effectively remediated by using 1.0% HCl with the same soil:solution mixing ratio for 3 hr. This work demonstrated that the combined use of physical separation and soil washing could be a viable option to remediate soils highly contaminated with heavy metals.

Development of Functional Products Using Chamaecyparis Obtusa Heartwood Essential Oil (편백심재오일을 이용한 기능성 제품 개발)

  • Choi, Ju-Hyeon;Park, Jeong-Hyeon;Cho, Yun-Jin
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.2
    • /
    • pp.211-218
    • /
    • 2021
  • The purpose of this study is to develop how to extract essential oil from heartwood of chamaecyparis obtusa and commercialize eco-friendly products using essential oil. Manufacturing process consisted of 8 steps: pulverization, input, pretreatment, extraction(steam distillation), steam emission, cooling, separation, aging. Through the method developed in this study, chamaecyparis obtusa oil with excellent quality in antibacterial effect can be extracted with high productivity. Also, chamaecyparis obtusa spray using this oil had good antibacterial and deodorant effects, and got no irritation results in the clinical test. To commercialize spray, we built a commercial website and performed consumer survey on the site. The survey results showed that respondents had positive attitude toward the products and their messages in the site. When the production standardization through precise quality control and the optimization of composition ratio are accomplished, this study will contribute to commercialize various types of cosmetics and quasi-drugs.

Improving Production of Value-added Materials by a Detoxification of Plant Derivatives (식물 유래 물질 해독화를 통한 고부가가치 소재 생산)

  • Sungmin Hwang;Jung Up Park;Bohyun Yun;Ji-Won Park;WonWoo Lee
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.12-12
    • /
    • 2023
  • Plant biomass, or lignocellulose, is one of the most abundant natural resources on earth. Lignocellulosic biomass, such as agricultural and forestry residue, serves as a renewable feedstock for microbial cell factories due to its low price and abundant availability. However, the recalcitrance of lignocellulosic biomass requires a pretreatment process prior to microbial fermentation, from which fermentable sugars including xylose and glucose are generated along with various inhibitory compounds. The presence of furan derivatives, such as 5-hydroxymethyl-2-furaldehyde and 2-furaldehyde (furfural), hampers the microbial conversion of lignocellulosic biomass into value-added commodities. In this study, furfural tolerance was improved by investigating the detoxification mechanism in non-model yeast. The genes encoding aldehyde dehydrogenases were overexpressed to enhance furfural tolerance and resulted in improving cell growth and lipid production that can be converted into biofuel. Taken together, this approach contributes to the understanding of the reducing toxicity mechanism of furfural by the aldehyde dehydrogenases and provides a promising strategy that the use of microorganism as an industrial workhorse to treat efficiently lignocellulosic biomass as sustainable plant derivatives.

  • PDF