DOI QR코드

DOI QR Code

Effect of Various Agents on Oral Bacterial Phagocytosis in THP-1 Cells

  • Song, Yuri (Department of Oral Microbiology, School of Dentistry, Pusan National University) ;
  • Lee, Hyun Ah (Department of Oral Microbiology, School of Dentistry, Pusan National University) ;
  • Na, Hee Sam (Department of Oral Microbiology, School of Dentistry, Pusan National University) ;
  • Jin, Chung (Department of Oral Microbiology, School of Dentistry, Pusan National University)
  • Received : 2018.12.05
  • Accepted : 2018.12.19
  • Published : 2018.12.31

Abstract

Phagocytosis is a fundamental process in which phagocytes capture and ingest foreign particles including pathogenic bacteria. Several oral pathogens have anti-phagocytic strategies, which allow them to escape from and survive in phagocytes. Impaired bacteria phagocytosis increases inflammation and contributes to inflammatory diseases. The purpose of this study is to investigate the influences of various agents on oral pathogenic phagocytosis. To determine phagocytosis, Streptococcus mutans, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis were stained with 5-(and-6)-carboxyfluorescein diacetate succinimidyl ester (CFSE), and was measured using flowcytometery and confocal microscopy. The influencing factors on phagocytosis were evaluated through the pretreatment of ROS inhibitor (N-acetyl-L-cysteine (NAC)), lysozyme, potassium chloride (KCI) and adenosine triphosphate (ATP) in THP-1 cells. Expression of pro-inflammatory cytokines was determined by enzyme-linked immunosorbent assay (ELISA). The phagocytosis of various bacteria increased in a MOI-dependent manner. Among the tested bacteria, phagocytosis of P. gingivalis showed the highest fluorescent intensity at same infection time. Among the tested inhibitors, the NAC treatment significantly inhibited phagocytosis in all tested bacteria. In addition, NAC treatment indicated a similar pattern under the confocal microscopy. Moreover, NAC treatment significantly increased the bacteria-induced secretion of $IL-1{\beta}$ among the tested inhibitors. Taken together, we conclude that the phagocytosis occurs differently depending on each bacterium. Down-regulation by ROS production inhibited phagocytosis and lead increased of oral pathogens-associated inflammation.

Keywords

References

  1. Lim JJ, Grinstein S, Roth Z. Diversity and versatility of phagocytosis: roles in innate immunity, tissue remodeling, and homeostasis. Front Cell Infect Microbiol. 2017;7:191. http://dx.doi.org/10.3389/fcimb.2017.00191.
  2. Rosales C, Uribe-Querol E. Phagocytosis: a fundamental process in immunity. Biomed Res Int. 2017;2017:9042851. http://dx.doi.org/10.1155/2017/9042851.
  3. Rabinovitch M. Professional and non-professional phagocytes: an introduction. Trends Cell Biol.1995;5:85-7. http://dx.doi.org/10.1016/S0962-8924(00)88955-2.
  4. SiamonGordon. Phagocytosis: An Immunobiologic Process. Immunity. 2016;44(3):463-475. https://doi.org/10.1016/j.immuni.2016.02.026.
  5. Shklair IL, Rovelstad GH, Lamberts BL. A study of some factors influencing phagocytosis of cariogenic streptococci by caries-free and caries-active individuals. J Dent Res. 1969; 48(5):842-5. http://dx.doi.org/10.1177/00220345690480053801.
  6. Jaffar N, Okinaga T, Nishihara T, Maeda T. Enhanced phagocytosis of Aggregatibacter actinomycetemcomitans cells by macrophages activated by a probiotic Lactobacillusstrain. J Dairy Sci. 2018;101(7):5789-5798. http://dx.doi.org/10.3168/jds.2017-14355.
  7. Guillermo Arango Duque, Albert Descoteaux. Macrophage Cytokines: Involvement in Immunity and Infectious Diseases. Front Immunol. 2014;5:491.http://dx.doi.org/10.3389/fimmu.2014.00491.
  8. D R Green, T H Oguin, J Martinez. The clearance of dying cells: table for two. Cell Death and Differentiation. 2016;23: 915-926. http://dx.doi.org/10.1038/cdd.2015.172.
  9. Van Dyke TE, Warbington M, Gardner M, Offenbacher S. Neutrophil surface protein markers as indicators of defective chemotaxis in LJP. J Periodontol. 1990;61:180-184. https://doi.org/10.1902/jop.1990.61.3.180.
  10. Gabrielle Fredman, Sungwhan F. Oh, Srinivas Ayilavarapu, Hatice Hasturk, Charles N. Serhan, Thomas E. Van Dyke Impaired Phagocytosis in Localized Aggressive Periodontitis: Rescue by Resolvin E1. PLoS ONE 6(9): e24422. https://doi.org/10.1371/journal.pone.0024422.
  11. Ali Cekici, Alpdogan Kantarci, Hatice Hasturk, Thomas E. Van Dyke. Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontol 2000. 2014;64(1):57-80. https://doi.org/10.1111/prd.12002.
  12. Eileen Uribe-Querol, Carlos Rosales. Control of Phagocytosis by Microbial Pathogens. Front immunol. 2017;8:1368. https://doi.org/10.3389/fimmu.2017.01368.
  13. Phillip Henneke, Douglas T. Golenbock. Phagocytosis, Innate Immunity, and Host-Pathogen Specificity. J Exp Med. 2004;199(1):1-4. https://doi.org/10.1084/jem.20031256.
  14. Flannagan RS, Jaumouillé V, Grinstein S. The cell biology of phagocytosis. Annu Rev Pathol. 2012;7:61-98. https://doi.org/10.1146/annurev-pathol-011811-132445.
  15. Greenberg S. Signal transduction of phagocytosis. Trends Cell Biol. 1995;5(3):93-9. https://doi.org/10.1016/S0962-8924(00)88957-6
  16. Paone C, Rodrigues N, Ittner E, Santos C, Buntru A, Hauck CR. The Tyrosine Kinase Pyk2 Contributes to Complement- Mediated Phagocytosis in Murine Macrophages. J Innate Immun. 2016;8(5):437-51. https://doi.org/10.1159/000442944.
  17. Schmidt C, Schneble N, Muller JP, Bauer R, Perino A, Marone R, Rybalkin SD, Wymann MP, Hirsch E, Wetzker R. Phosphoinositide 3-kinase ${\gamma}$ mediates microglial phagocytosis via lipid kinase-independent control of cAMP. Neuroscience. 2013;233:44-53. https://doi.org/10.1016/j.neuroscience.
  18. Tang R, Zhang G, Chen SY. Response gene to complement 32 protein promotes macrophage phagocytosis via activation of protein kinase C pathway. J Biol Chem. 2014;289(33): 22715-22. https://doi.org/10.1074/jbc.M114.566653.
  19. John M. Robinson. Reactive oxygen species in phagocytic leukocytes. Histochem Cell Biol. 2008;130(2): 281-297. https://doi.org/10.1007/s00418-008-0461-4.
  20. Panday A, Sahoo MK, Osorio D, Batra S. NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol. 2015;12:5-23. https://doi.org/10.1038/cmi.2014.89
  21. El-Benna J, Hurtado-Nedelec M, Marzaioli V, Marie JC, Gougerot-Pocidalo MA, Dang PM. Priming of the neutrophil respiratory burst: role in host defense and inflammation. Immunol Rev. 2016;273:180-93. https://doi.org/10.1111/imr.12447.
  22. Panday A, Sahoo MK, Osorio D, Batra S. NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol. 2015;12:5-23. https://doi.org/10.1038/cmi.2014.89
  23. Guillermo Arango Duque, Albert Descoteaux. Macropahge cytokines: involvement in immunity and infectios disease. Front Immunol. 2014;5:491 https://doi.org/10.3389/fimmu.2014.00491
  24. E. R. Unanue, D. I. Beller, J. Calderon, J. M. Kiely, M. J. Stadecker. Regulation of immunity and inflammation by mediators from macrophages. Am J Pathol. 1976;85(2): 465-478.
  25. Charles A. Dinarello. Historical insights into cytokines. Eur. J. Immunol. 2007;37: 34-45. https://doi.org/10.1002/eji.200737772
  26. K. Asif, Shaila V. Kothiwale. Phagocytic activity of peripheral blood and crevicular phagocytes in health and periodontal disease. J Indian Soc Periodontol. 2010;14(1): 8-11. https://doi.org/10.4103/0972-124X.65427.
  27. Hajishengallis G. Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response. Trends Immunol. 2014;35:3-11. https://doi.org/10.1016/j.it.2013.09.001
  28. Hajishengallis G. Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response. Trends Immunol. 2014;35:3-11. https://doi.org/10.1016/j.it.2013.09.001.