• Title/Summary/Keyword: pretreatment process

Search Result 722, Processing Time 0.024 seconds

The Role of Cyclooxygenase Metabolites in the Pathogenetic Mechanism of Endotoxin-Induced Acute Lung Injury in Domestic Pigs (내독소에 의한 돼지의 급성 폐손상에서 Cyclooxygenase 대사물의 역할에 관한 연구)

  • Yoo, Chul-Gyu;Jeong, Ki-Ho;Choi, Hyung-Seok;Lee, Hyuk-Pyo;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Kim, Keun-Youl;Han, Yong-Chol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.39 no.1
    • /
    • pp.42-54
    • /
    • 1992
  • Background:It has been suggested that the cyclooxygenase metabolites play an important role in changes of early hemodynamic parameters in the endotoxin-induced acute lung injury. But there have been many debates about their role in the late increase of alveolar-capillary permeability, and it is not known whether they act directly or indirectly through oxygen free radicals which have been known to be produced during the metabolic process of cyclooxygenase pathway. So we performed this study to identify the pathogenetic role of cyclooxygenase metabolites in the endotoxin-induced acute lung injury in domestic pigs. Method: We infused endotoxin into 8 domestic pigs; endotoxin only (n=3), and pretreatment with indomethacin (n=5). We observed the sequential changes in hemodynamic parameters, the concentration of plasma oxidized glutathione (GSSG) in pulmonary arterial and venous blood, and albumin content in bronchoalveolar lavage fluid (BALF). Results: 1) While cardiac output decreased, mean pulmonary arterial pressure, pulmonary vascular resistance, and alveolar-arterial oxygen difference increased over phase 1 (0-2hr) and phase 2 (2-4.5hr) by endotoxin, indomethacin attenuated the decrease in cardiac output during phase 1 and increase in mean pulmonary arterial pressure, pulmonary vascular resistance, and alveolar-arterial oxygen difference during both phases. 2) The increase in plasma GSSG content during phase 2 was not attenuated by indomethacin. 3) The content of BALF albumin was significantly lower in indomethacin groups than that of endotoxin group. Conclusion: These results suggest that it is likely that cyclooxygenase metabolites have an effect on endotoxin-induced acute lung injury during both phases probably through direct action.

  • PDF

THE EFFECT OF RISPERIDONE ON SALIVARY GLAND CELLS (리스페리돈이 타액선 세포에 미치는 영향)

  • Lee, Yeon-Joo;Kim, Yeong-Jae;Kim, Jung-Wook;Jang, Ki-Taek;Kim, Chong-Chul;Hahn, Se-Hyun;Lee, Sang-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.1
    • /
    • pp.47-56
    • /
    • 2008
  • Risperidone is a widely prescribed atypical antipsychotic agent. Approved by the FDA as the first drug to treat irritability associated with autism in children, it is also used to treat tic disorder and Tourette's syndrome. Its adverse reactions related to dentistry include dry mouth, the mechanism of which is yet to be identified. The aim of this study is to identify, at the cellular level, how and to what extent risperidone affects intracellular free calcium concentration ($[Ca^{2+}]_i$), an primary intracellular factor in the regulation of fluid secretion in salivary gland cells. The human salivary gland cell line (HSG) was grown in MEM supplemented with 10% BCS. In order to measure $[Ca^{2+}]_i$, Fura-2/AM was loaded in the HSG, and fluorescence at 340 nm/380 nm excitation was measured in the 500 nm emission ratio. After every experiment, a calibration experiment was conducted in order to readjust the ratio to the actual $[Ca^{2+}]_i$. Changes in $[Ca^{2+}]_i$ were measured in the presence of carbachol, ATP and histamine. The researcher then explored how the pretreatment of risperidone affected such changes. Findings of this study include: 1. In HSG, $[Ca^{2+}]_i$ increased due to the addition of carbachol, ATP and histamine. The presence of risperidone inhibited the action of histamine on this process, while making little effect on that of carbachol and ATP. 2. A quantification of $[Ca^{2+}]_i$ in relation to histamine of different concentrations indicates that the effect of histamine was concentration dependent with an $EC_{50}$ of $3.3{\pm}0.5\;{\mu}M$. 3. The inhibitory effect of risperidone on histamine-induced $[Ca^{2+}]_i$ was concentration-dependent with an $IC_{50}$ of $104.4{\pm}14\;nM$. 4. Risperidone inhibits histamine-induced Ca2+ release from endoplasmic reticulum and influx of extracellular $Ca^{2+}$ in HSG cells(p<0.05).

  • PDF

Effect of Sodiun Hypochlorite Pretreatment, Light Intensity and Depth of Soil Covering on Germination of Cattail(Typha spp.) Seeds (Sodium Hypochlorite 처리와 광도 및 복토 깊이의 차이가 부들의 종자 발아에 미치는 영향)

  • Kim Young-Ju;Heo Jin-Ah;Hwang Yong-Soo;Ku Ja-Hyeong
    • Asian Journal of Turfgrass Science
    • /
    • v.19 no.2
    • /
    • pp.115-123
    • /
    • 2005
  • The effect of sodium hypochlorite treatment on the germination of cattail (Typha spp.) seeds was investigated in growth chambers maintained on a 14-h photoperiod with various temperatures and light intensities. Germination rates of seeds were, in general, enhanced by the increase of light intensity and temperature regardless of cattail species. Seeds of T. oreientalis had 4.3, 13.0 and $7.3\%$ germination at temperatures of 20, 25 and $30^{circ}$C, respectively, under light intensity of 7.5${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. T. angustata showed higher germination rate, thus, 10.7, 22.7 and $50.7\%$ under same temperature and light environment. Under high light intensity of 79.5${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, the germination rates of T. oreintalis and T angustata were $78.3\%$ and $88.7\%$ at $30^{circ}$C, respectively. Scarification of seeds with NaOC1 ($4\%$, available chlorine) increased germination rate in both species, especially even at low temperature of $20^{circ}$C. Germination speed was also enhanced by NaOC1 treatment. High light intensity further increased the germination rate. When NaOC1 treated seeds were sowed on the soil surface in plastic house, the seedling emergence was nearly $100\%$. Untreated seeds of T. oreintalis and T. angustara showed 40 and $50\%$, respectively, in germination under same condition. However, when the depth of soil covering was over 1.0 cm, seedling emergence was retarded more than 1 month. On the process of seedling development, emergence of mesocoty1 occurred firstly and after than primary root and first leaf were developed on the end of elongated mesocotyl. These results suggest that the promotion of seed germination by NaOC1 pretreament may be induced from the increase of light absorptivity as well as water permeability through scarifying and bleaching the seed coat.

The Effects of RGDS Tetrapeptide on the Calcification of the Bovine Pericardium Transplanted Subcutaneously in Rats (흰쥐에서 RGDS tetrapeptide가 소 심낭 이식절편의 피하이식 후 석회화에 미치는 영향)

  • Jin, Ung;Lee, Ju-Hyeon;Kim, Chi-Kyung;Lee, Sun-Hee
    • Journal of Chest Surgery
    • /
    • v.35 no.2
    • /
    • pp.94-101
    • /
    • 2002
  • All kinds of tissue valves must be pretreated for the inactivation of immunologic properties and the strengthening of tissue before implantation. However, the tissue valves are gradually denatured with the calcification process and they eventually lose their functions. Recent reports have shown the existence of specific calcium binding non collagenous proteins in the calcified area of implanted biomaterials. This experiment was intended to confirm the effect of pretreatment with RGDS(Arg-Gly-Asp-Ser) tetrapeptide on the calcification of subcutaneously implanted bovine pericardium in rats. RGDS tetrapeptide has the same amino acid sequence of attachment site of specific calcium binding non collagenous proteins. Material and Method: All bovine pericardial pieces were fixed with 0.6% glutaraldehyde. The pretreatments were done using 5 different methods, groupI, with normal saline for 60 minutes, groupII, with 0.5% GRSD(Gly-Arg-Scr-Asp) tetrapeptide solution for 60 minutes, group III : with 0.5% RGDS(Arg-Gly-Asp-Ser) tctrapeptide for 30 minutes, group IV ; with 0.5% RGDS for 60 minutes, and group V : with 0.5% RGDS for 120 minutes. The pretreated bovine pericardial pieces were implanted subcutaneously at the abdominal sites of rats. 30 days after the implantation, the implanted bovine pericardial tissue were examined radiologically, biochemically, and histologically to measure the severity of calcification. Result: On the radiological examination, group I ; 68.42$\pm$3.06, group II , 64.25$\pm$5.58 showed significant difference with group III: 48.00$\pm$3.57, group IV; 43.67$\pm$2.31, and group V ; 2.58$\pm$2.47(p<0.05). There was no difference between group I and II(p=0.105). On the biochemical examination, the amount of calcium in group I was , 33.09$\pm$6.59 mg, in group II ; 28.12$\pm$5.50mg, in group III ; 25.42$\pm$7.67mg, in group Ⅵ ; 20.51$\pm$5.11mg, and in group V : 15.43$\pm$4.25mg.

Rapid Detection of Radioactive Strontium in Water Samples Using Laser-Induced Breakdown Spectroscopy (LIBS) (Laser-Induced Breakdown Spectroscopy (LIBS)를 이용한 방사성 스트론튬 오염물질에 대한 신속한 모니터링 기술)

  • Park, Jin-young;Kim, Hyun-a;Park, Kihong;Kim, Kyoung-woong
    • Economic and Environmental Geology
    • /
    • v.50 no.5
    • /
    • pp.341-352
    • /
    • 2017
  • Along with Cs-137 (half-life: 30.17 years), Sr-90 (half-life: 28.8 years) is one of the most important environmental monitoring radioactive elements. Rapid and easy monitoring method for Sr-90 using Laser-Induced Breakdown Spectroscopy (LIBS) has been studied. Strontium belongs to a bivalent alkaline earth metal such as calcium and has similar electron arrangement and size. Due to these similar chemical properties, it can easily enter into the human body through the food chain via water, soil, and crops when leaked into the environment. In addition, it is immersed into the bone at the case of human influx and causes the toxicity for a long time (biological half-life: about 50 years). It is a very reductive and related with the specific reaction that makes wet analysis difficult. In particular, radioactive strontium should be monitored by nuclear power plants but it is very difficult to be analysed from high-cost problems as well as low accuracy of analysis due to complicated analysis procedures, expensive analysis equipment, and a pretreatment process of using massive chemicals. Therefore, we introduce the Laser-Induced Breakdown Spectroscopy (LIBS) analysis method that analyzes the elements in the sample using the inherent spectrum by generating plasma on the sample using pulse energy, and it can be analyzed in a few seconds without preprocessing. A variety of analytical plates for samples were developed to improve the analytical sensitivity by optimizing the laser, wavelength, and time resolution. This can be effectively applied to real-time monitoring of radioactive wastewater discharged from a nuclear power plant, and furthermore, it can be applied as an emergency monitoring means such as possible future accidents at a nuclear power plants.

Trends in Rapid Detection Methods for Marine Organism-derived Toxins (해양 생물 유래 독소의 나노 기술 기반 신속 진단법 개발 동향)

  • Park, Chan Yeong;Kweon, So Yeon;Moon, Sunhee;Kim, Min Woo;Ha, Sang-Do;Park, Jong Pil;Park, Tae Jung
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.4
    • /
    • pp.291-303
    • /
    • 2020
  • Marine organism-derived toxins have negative effects not only on human health but also in aquaculture, fisheries, and marine ecosystems. However, traditional analytical methods are insufficient in preventing this threat. In this paper, we reviewed new rapid methods of toxin detection, which have been improved by adopting diverse types of nanomaterials and technologies. Moreover, we herein describe the main strategies for toxin detection and their related sensing performance. Notably, to popularize and commercialize these newly developed technologies, simplifying the process of pre-treating real samples real samples is very important. As part of these efforts, numerous studies have reported pretreatment methods based on the antibody-immobilized magnetic nanoparticles, and some cases have applied nanoparticles to enhance the sensing performance by utilizing the intrinsic catalytic activity. Furthermore, some reports have introduced fluorescent nanoparticles, such as quantum dots, to represent the lower detection limits of conventional enzyme-based colorimetric methods and lateral flow assays. Some studies using electrochemical measurements based on aptamer-nanoparticle complexes have also been announced. In addition, as the response to new toxins generated by changes in the marine environment is still lacking, further research on diagnostic and detection is also greatly needed for these kinds of marine toxins and their derivatives.

Study on the Manufacturing techniques & Conservation of Iron Pot from Cheonmachong Ancient Tomb (천마총 출토 철부(鐵釜)의 제작기법 및 보존처리)

  • Lee, Seung Ryul;Shin, Yong Bi;Jung, Won Seob
    • Journal of Conservation Science
    • /
    • v.30 no.3
    • /
    • pp.263-275
    • /
    • 2014
  • It's shown how to proceed the study on Manufacturing techniques & Conservation to the Iron Pot from Cheonmachong Ancient Tomb(the 155th Tomb in Hwangnam-dong). In order to investigate manufacturing techniques of the Iron Pot, some parts of the relic were gathered. After mounting, polishing and etching on the relic, analyzing the metal microstructure was conducted. Also it's conducted a SEM-EDS analysis on the nonmetallic inclusion. White iron structure was observed in the metallurgical structure inspection, SEM-EDS analysis. It seems to be dried slowly at room temperature after casting, doesn't look as particular heat treatment to improve brittleness. It is estimated that it's as the handle seam side were verified about 3cm inch wide, 1.5 thick in center of body, so 2 separate half-completed products was cast with width-type mould. The manufacturing techniques Using white cast iron structure, width-type mould are observable to the Iron Pot excavated from Sikrichong Ancient Tomb & Hwangnamdaechong grand Ancient Tomb around those were constructed the same time. It's able to recognize that it's almost identical manufacturing techniques at that time. Conservation is generically following those are survey of pretreatment, foreign material removal, stabilization, restoration and color matching in the order. cleaning & drying were added to the process as occasion demands. The strengthening treatment were difficult with artifact's volume, low concentration Paraloid NAD-10 solution was spread two or three times with a brush, surface hardening also came up with 15wt% Paraloid NAD-10 solution after the conservation was complete. There were connection & restoration for the restoration to the damage after modeling forms that it's similar to damaged parts by using the Fiber Reinforced Plastic resins(POLYCOAT FH-245, mold laminated type). Throughout this research, capitalizing on accumulations of measurements about the production technique of Iron Pot in the time of the fifth and 6th centuries is no less important than the Iron artifact's conservation for a better study in the future.

Separation of Reducing Sugars from Rape Stalk by Acid Hydrolysis and Fabrication of Fuel Pellets from its Residues (산가수분해한 유채대로부터 유리당의 분리 및 이의 잔사로부터 펠릿의 제조)

  • Yang, In;Ahn, Byoung Jun;Kim, Myeong-Yong;Oh, Sei Chang;Ahn, Sye Hee;Choi, In-Gyu;Kim, Yong-Hyun;Han, Gyu-Seong
    • Korean Journal of Plant Resources
    • /
    • v.27 no.1
    • /
    • pp.60-71
    • /
    • 2014
  • This study was conducted to identify the potential of rape stalk as a raw material for biorefinery process of rape flower. At first, rape stalk (RS) was immersed in distilled water (DW), acetic acid (AA), oxalic acid (OA), sulfuric acid (SA) and sodium hydroxide (SH) solutions, and the content of reducing sugars liberated from immersed RS was analyzed. Glucose, xylose, arabinose and sucrose were detected varying with the immersion type. In particular, 1% AA-immersion of RS for 72 hr was the most effective conditions to liberate glucose from RS. Secondly, the RS residues were used for elementary analysis and fabrication of fuel pellets. In addition to the solution type, concentration of immersion solutions (0%, 1%, 2%) and immersion time (24, 72, 120 hr) were used as experimental factors. The contents of nitrogen, sulfur and chlorine reduced effectively through the immersion of RS in DW, AA and OA solutions. For properties of RS-based pellets, bulk density and higher heating value of RS-based pellets greatly increased with the immersion of RS, and the qualities were much higher than those of the A-grade pellet of the EN standards. Ash content decreased remarkably through the immersion of RS, and was satisfied with the A-grade pellet standard. Durability was negatively affected by the immersion of RS, and did not reached to B-grade of the EN standard. In conclusion, acid immersion of RS can be a pretreatment method for the production of fuel pellet and bioethanol, but use of the immersed RS for the production of high-quality pellets might be restricted due to low durability of immersed-RS pellets. Therefore, further studies, such as investigation of detailed immersion conditions, fabrication of mixed pellets with wooden materials and addition of binders, are needed to resolve the problems.

Quantitative Elemental Analysis in Soils by using Laser Induced Breakdown Spectroscopy(LIBS) (레이저유도붕괴분광법을 활용한 토양의 정량분석)

  • Zhang, Yong-Seon;Lee, Gye-Jun;Lee, Jeong-Tae;Hwang, Seon-Woong;Jin, Yong-Ik;Park, Chan-Won;Moon, Yong-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.399-407
    • /
    • 2009
  • Laser induced breakdown spectroscopy(LIBS) is an simple analysis method for directly quantifying many kinds of soil micro-elements on site using a small size of laser without pre-treatment at any property of materials(solid, liquid and gas). The purpose of this study were to find an optimum condition of the LIBS measurement including wavelengths for quantifying soil elements, to relate spectral properties to the concentration of soil elements using LIBS as a simultaneous un-breakdown quantitative analysis technology, which can be applied for the safety assessment of agricultural products and precision agriculture, and to compare the results with a standardized chemical analysis method. Soil samples classified as fine-silty, mixed, thermic Typic Hapludalf(Memphis series) from grassland and uplands in Tennessee, USA were collected, crushed, and prepared for further analysis or LIBS measurement. The samples were measured using LIBS ranged from 200 to 600 nm(0.03 nm interval) with a Nd:YAG laser at 532 nm, with a beam energy of 25 mJ per pulse, a pulse width of 5 ns, and a repetition rate of 10 Hz. The optimum wavelength(${\lambda}nm$) of LIBS for estimating soil and plant elements were 308.2 nm for Al, 428.3 nm for Ca, 247.8 nm for T-C, 438.3 nm for Fe, 766.5 nm for K, 85.2 nm for Mg, 330.2 nm for Na, 213.6 nm for P, 180.7 nm for S, 288.2 nm for Si, and 351.9 nm for Ti, respectively. Coefficients of determination($r^2$) of calibration curve using standard reference soil samples for each element from LIBS measurement were ranged from 0.863 to 0.977. In comparison with ICP-AES(Inductively coupled plasma atomic emission spectroscopy) measurement, measurement error in terms of relative standard error were calculated. Silicon dioxide(SiO2) concentration estimated from two methods showed good agreement with -3.5% of relative standard error. The relative standard errors for the other elements were high. It implies that the prediction accuracy is low which might be caused by matrix effect such as particle size and constituent of soils. It is necessary to enhance the measurement and prediction accuracy of LIBS by improving pretreatment process, standard reference soil samples, and measurement method for a reliable quantification method.

Preparation and Characterization of Bamboo-based Activated Carbon by Phosphoric Acid and Steam Activation (인산 및 수증기 활성화에 의한 대나무 활성탄 제조 및 특성 연구)

  • Park, Jeong-Woo;Ly, Hoang Vu;Oh, Changho;Kim, Seung-Soo
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.129-139
    • /
    • 2019
  • Bamboo is an evergreen perennial plant, and it is known as one of the most productive and fastest-growing plants in the world. It grows quickly in moderate climates with only moderate water and fertilizer. Traditionally in Asia, bamboo is used for building materials, as a food source, and as versatile raw materials. Bamboo as a biomass feedstock can be transformed to prepare activated carbon using the thermal treatment of pyrolysis. The effect of process variables such as carbonization temperature, activation temperature, activation time, the amount of steam, and the mixing ratio of phosphoric acid and bamboo were systematically investigated to optimize the preparation conditions. Steam activation was proceeded after carbonization with a vapor flow rate of $0.8{\sim}1.8mL-H_2O\;g-char^{-1}\;h^{-1}$ and activation time of 1 ~ 3 h at $700{\sim}900^{\circ}C$. Carbon yield and surface area reached 2.04 ~ 20.59 wt% and $499.17{\sim}1074.04m^2\;g^{-1}$, respectively, with a steam flow rate of $1.4mL-H_2O\;g-char^{-1}\;h^{-1}$ for 2 h. Also, the carbon yield and surface area were 24.67 wt% and $1389.59m^2\;g^{-1}$, respectively, when the bamboo and phosphoric acid were mixed in a 1:1 weight ratio ($700^{\circ}C$, 2 h, $1.4mL-H_2O\;g-char^{-1}\;h^{-1}$). The adsorption of methylene blue into the bamboo activated carbon was studied based on pseudo first order and second order kinetics models. The adsorption kinetics were found to follow the pseudo second order model, which is governed by chemisorption.