• Title/Summary/Keyword: pretreatment of cotton

Search Result 37, Processing Time 0.029 seconds

Washing Treatment Effects on Cotton and Kenaf Blend Fabrics (면섬유와 케나프섬유를 혼방한 직물과 편성물에 대한 워싱 처리 효과)

  • Lee, Hye-Ja;Yoo, Hye-Ja;Lim, Hee-Jeong
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.3
    • /
    • pp.448-458
    • /
    • 2010
  • Kenaf has a rigid and rough touch that inhibits the use of it as a textile material; therefore, this study developed a novel textile material using kenaf. Kenaf and cotton were blended in the ratio of 3:7 and manufactured as 20' spun yarn that was compared to 20's spun yarn made of 100% cotton. Both kenaf/cotton-blended and 100% cotton spun yarn were constructed as plain woven and knitted fabrics. Four kinds of fabrics were prepared as follows. Plain kenaf/cotton-woven fabrics, plain cotton-woven fabrics, kenaf/cotton jersey, and cotton jersey. A cellulase washing process was carried out to reduce the character of kenaf/cotton-blended fabrics, rigid, and rough touch. All fabrics were pretreated with NaOH. NaOH at the concentrations of 0, 0.25, 1.25, and 2.25mol/L, and cellulase at concentrations of 0, 1, 3 and 5g/L were used since the pretreatment of NaOH has a higher efficiency of weight loss than $Na_2CO_3,\;K2CO_3$ and Triton X-100. The ratio of weight loss, tensile strength, stiffness, drape property, and surface appearance were measured in order to evaluate the efficiency of the washing treatment on fabrics. Kenaf/cotton-blended fabrics exhibited more rigid and rough features than cotton fabrics. A cotton jersey showed significant differences in the degree of stiffness and drape properties. When all fabrics were treated with 1.25mol/L of NaOH and 3g/L of cellulase, kenaf/cotton-blended fabrics showed a higher retention ratio of tensile strength than cotton fabrics after washing despite the increased weight l08s of kenaf-blended fabrics compared to cotton fabrics. The ratio of weight loss for all fabrics was well correlated with flexibility. The washing treatment process made woven fabrics more flexible than knitted fabrics, because the stiffness of woven fabrics made the rubbing actions stronger. Kenaf/cotton-blended fabrics showed a significantly higher ratio of weight loss and more reduction in stiffness than cotton fabrics after the washing treatment. This might be due to the lack of cohesiveness and easy elimination from fabrics. The drape property of kenaf-blended fabrics was superior to cotton fabrics.

A Study on Recycling NaOH from Pre-treatment Process with Concentration Control System - Scouring Ability of Cotton Fabric Treated with Recycled NaOH - (농도제어장치를 이용하여 면직물 전처리 공정에서 발생하는 가성소다 폐액의 재활용에 관한 연구 - 재활용 가성소다에 의한 면직물의 정련성 -)

  • Lee, Un-Pill
    • Fashion & Textile Research Journal
    • /
    • v.6 no.3
    • /
    • pp.393-398
    • /
    • 2004
  • This research offers recycling method of NaOH from mercerizing process of cotton fabric. The measuring system of NaOH concentration was designed for the mercerizing process and tested for various conditions which can be occurred in factory. The accuracy of the system was varied as the testing condition was changed. As the concentration of sulfuric acid used for titrating NaOH decreased, the accuracy of measuring system increased. The concentration of NaOH for waste water collected from mercerizing process was measured by 5.2%. As the ratio of newly mixed NaOH increased, moisture regain. water absorbency and whiteness of the specimen increased. The bending rigidity(B) and shear rigidity(G) decreased, as the ratio of newly mixed NaOH increased.

Effect of Pretreatment by Softener on the Cotton Knit Handle in Fragrant Finishing (방향가공시 유연제 전처리에 의한 면편성물의 태변화)

  • 김혜림;송화순
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.3_4
    • /
    • pp.521-526
    • /
    • 2004
  • The fragrant fabrics are prepared by the attaching microcapsules using acrylic binder. To improve the handle of fragrant fabrics, pretreatment by softener is suggested. The durability of fragrant fabrics and the change of their handle are investigated. It is carried out One-way ANOVA and Duncan test to determine bending properties, shear properties, surface properties of untreated, SO-MC and BI-MC by Kawabata system. BI-MC shows significant differences in B and 2HB. SO-MC shows significant differences in G and 2HG. It turned out the pretreatment by softener mitigated the effect of binder and makes fabrics softer than untreated fabrics.

Effect of Chitosan Treatment Methods on the Dyeing of Cotton, Nylon, and PET using Cochineal (III) - Light Fastness and Perspiration Fastness Characteristics -

  • Lee, Dong-Min;Jeon, Dong-Won;Kim, Jong-Jun
    • Journal of Fashion Business
    • /
    • v.9 no.3
    • /
    • pp.99-113
    • /
    • 2005
  • Recently, problems related to the natural dyeing have been addressed. Severer problems have been posed by the elution at metallic ions and dyestuff tram dyed fabrics. In order to prevent the elution tram the dyed fabrics, it is needed to improve the fastness. Especially, it is the most important measure to improve the fastness to perspiration in terms at human body safety. In this study, we employed chitosan pretreatment method bet ore the dyeing process, anticipating that the pretreatment might improve the fastness. We used Al, Sn, and Cu as mordants and investigated the fastness to light and perspiration of the chitosan treated and dyed fabric specimens. By the chitosan pretreatment, the fastness to perspiration improved, while the fastness to light did not.

Sulfhydryl Cotton Enrichment Separation-Determination of Silver in Geological Samples by ICP-MS

  • Li, Dan;Zhao, Zhifei;Chu, Qin;Fang, Jindong
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3561-3565
    • /
    • 2011
  • A rapid and inexpensive method was developed for the determination of trace silver in geological samples by using sulfhydryl cotton coupled with ICP-MS. The interferences such as $^{90}Zr$, $^{92}Mo$ and $^{93}Nb$ on silver were investigated in detail. Sulfhydryl cotton was found to be an effective adsorbent for separation of interferences for Ag in the solutions. Excellent agreements with the certified values were obtained for all the certified reference materials. The memory effects of Ag by ICP-MS were examined by using different agents, including water, nitric acid, and HCl-thiourea to all standards/samples. The agents also acted as cleansing solutions. A combination of HCl with thiourea gave the minimum memory effect. For comparison of results, a proposed Chinese Geology Survey procedure DC-ARC-AES and a direct determination pretreatment method of ICP-MS (water bath- auqa regia digestion) were studied. Under optimal conditions, the detection limits of our method for $^{107}Ag$ and $^{109}Ag$ were 1.2 ng/g and 1.3 ng/g, which offered much better accuracy for some difficult analysis geological samples such as GBW07604, GBW07605.

A Study on the Media Treatment Technology of the High-Coloured Digital Textile Printing (고발색 디지털 프린팅을 위한 미디어 전처리 기술)

  • Hong, Min-Gi;Lee, Ha-Na;Kim, Ji-Young;Zhang, Lian-Ping;Yoon, Seok-Han;Kim, Mi-Kyung;Kim, Sam-Soo
    • Textile Coloration and Finishing
    • /
    • v.19 no.4
    • /
    • pp.1-9
    • /
    • 2007
  • In recent years, the application of digital textile printing has increased. The benefits of using this method include the ease of sampling and the production of printed textiles. However, the production process of digital textile printing differs from that of conventional printing. For successful digital textile printing by ink-jet technology, the pretreatment of fabrics is very important in order to overcome the following problems. Low viscosity ink can spread easily on the textile surface leading to poor resolution. As a result, the combination of ink and pretreatment chemicals is still impractical and consequently most fabrics used in digital textile printing will require a pre treated coating in order to prevent the ink colours from bleeding on the fabric. Research presented in this paper shows some preliminary attempts to establish the relationship between the pre treatment and the digital textile printing quality. Various cotton fabrics were treated with pre treatment agents including ingredients like thickener, alkali and humectant, and then ink spread effect and colour yield of printed fabrics by reactive ink were analysed by using an optical microscope and K/S value. The results show that digital textile printing quality on cotton fabrics can be optimized with appropriate pre treatments.

The Effects of Chitosan Pretreatment on the Dyeabilities and Antibacterial Activities of Persimmon Juice-Dyed Cotton Fabrics (키토산 전처리가 감즙염색 면직물의 염색성과 항균성에 미치는 효과)

  • Han, Young-Sook;Lee, Hye-Ja;Kim, Jung-Hee
    • Journal of the Korean Home Economics Association
    • /
    • v.43 no.2
    • /
    • pp.115-126
    • /
    • 2005
  • Environmentally and human compatible chitosan were pretreated on cotton fabrics which were then dyed with 100% persimmon juice. The chitosan concentration was 1% and the chitosan types were high molecular weight chitosan (1980cps), low molecular weight chitosan (18첸), chitosan oligomer and water soluble chitosan. The properties of the fabric surfaces, the dyeabilities, the color fastnesses, the antibacterial activities, the strengths, the elongations and the drape stiffnesses were evaluated. The properties of the chitosanpretreated, persimmon juice-dyed cotton fabrics (CLP) were compared to those of the untreated (CN), chitosan treated (CL) and persimmon juice-dyed fabrics (CP). The results were as follows. The fibers extruded from the surface of CN decreased on CP. The air between the fibers within CN were substituted by chitosan solution or persimmon juiceand decreased within CLP according to SEM observations. The effects of chitosan treatment, the chitosan molecular weights and the degrees of deacetylation of chitosan on the dyeabilities of the persimmon juice-dyed cotton fabric were not distinct. The curing after chitosan padding improved the dyeabilities of CLP compare to noncuring. The strengths of CP decreased and those of CL increased, compared to those of CN. The strengths of CLP were greater than those of CP. The elogations of CP and CL were greater than those of CN. The strengths and elongations of CLP were greater than those of CN. The chitosan treatments improved the strengths but not the elongations. The drape stiffnesses of CL, CP and CLP were greater than those of CN. The antibacterial activites of chitosan pretreated, persimmon juice-dyed cotton fabrics against Staphylococcus aureus were increased by more than 98% by persimmon juice.

Studies on the Transfer Printing of Cotton Fabrics (면직물의 건식전사날염에 관한 연구)

  • Hwang, Jong-Ho;Lee, Seok-Young;Cho, Hwan
    • Textile Coloration and Finishing
    • /
    • v.7 no.3
    • /
    • pp.31-37
    • /
    • 1995
  • Effects of glycol pretreatment conditions such as concentration and molecular weight of glycols and dye types of different constitutions on the degree of transfer were investigated when transfer printed onto the cotton fabric with disperse dyestuffs. Obtained results are as follows ; 1. Although the degree of transfer increases linearly with temperature a time, above a certain critical point, they show decremental aspects for both of C.I. Disperse Orange 3 and C.I. Diperse Violet 1. 2. Degree of transfer increases with molecular weight of glycols, but PEG 200 which has a moleular weight 200 and boiling point of 300$^{\circ}C$ is more effcient than that of lower molecular weight. 3. Degree of tansfer for the C.I. Disperse Orange 3 having constitution of azo benzene type is somewhat higher than that of C.I. Disperse Violet 1 of amino anthraquinone.

  • PDF

Development of Susceptible Functional Fiber through Chitosan Finishing Treatment of Tencel Blended Fabrics (Part I) - Surface Structure Analysis and Hand Value Assessment - (텐셀 혼방 직물의 키토산 가공처리를 통한 감성기능 소재의 개발 (제1보) - 표면구조 분석 및 태 평가 -)

  • Park Youn-Hee;Bae Hyun-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.7 s.144
    • /
    • pp.987-996
    • /
    • 2005
  • For cationization, if chitosan, which has the affinity for a human body and reacts easily without inducing any pollution, is used, cationization of Tencel blended fabrics can be expected and further expansion of its use as a new susceptible material can be expected. Therefore, in this study, in order to compare a Tencel/cotton and a Tencel/Cotton/PET as Tencel blended fabrics with a Tencel single fabric, the fabric samples were used and processed with chitosan after NaOH pretreatment and enzyme treatment thereof, and then its adherent efficiency was enhanced by using a crosslinking agent, and then it was got to be finished with a softener. The fibril of Tencel fabric was controlled by enzyme treatment so that the surface of the Tencel blended fabrics got to be smooth. Chitosan adhered to the surface of the Tencel blended fabrics in the form of particles through its processing with chitosan. Chitosan treatment caused little change in the crystal structure thereof and the thermal stability of the Tencel/Cotton/PET fabric was slightly improved. The total hand value(THV) calculated on the basis of the change due to chitosan treatment was increased in all samples.

Improvement in the Color Fastness of Cotton Fabrics Dyed with Kale-Extracted Colorants (케일 추출 색소로 염색된 면직물의 염색견뢰도 향상)

  • Lee, Yeonjoo;Kwak, Sukyung;Jang, Jinho
    • Textile Coloration and Finishing
    • /
    • v.31 no.4
    • /
    • pp.225-232
    • /
    • 2019
  • The colorants of kale powders were optimally extracted using an 1:1 mixture solvent of ethanol and DMSO at 105℃ for 30 minutes obtaining a high yield of 359.7㎍/mL chlorophylls. Low color fastness of the dyed fabrics with the extracts, particularly against washing and solar radiation, can be overcome by the combined treatments of chitosan, heat setting and tannic acid. Washing fastness to color change was improved from rating 1-2 up to 5 due to the enhanced electrostatic interactions between the colorants and the positive glucosamine unit of the chitosan in the cationized cotton. In addition, the tannic acid treatment contributed to the additional increase in color fastness after the sequential treatments of chitosan pretreatment, dyeing and heat setting.