• Title/Summary/Keyword: prestressed structure

Search Result 174, Processing Time 0.318 seconds

Evaluation of Dynamic Stability for Precast and Prestressed Wall reinforced by Steel Pipe (강봉으로 보강된 프리캐스트 프리스트레스 옹벽의 동적 안정성 평가)

  • Lee, Il-Wha;Lee, Su-Hyung;Choi, Chan-Yong;Kum, Chang-Jun
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.381-386
    • /
    • 2006
  • The advantages of precast production are fast construction, reduction of labor and insurance of good quality. In recently, the application of the precast production is increased in the earth retaining wall field. This paper presents the results of the numerical modelling that was carried out to evaluate the stability of precast and prestressed earth retaining wall under dynamic train loading. The two-dimensional explicit dynamic finite element method (ABAQUS) was used to carry out the numerical analyses. The train loading to act track is calculated by using the real measured phase angle data. Mainly, the displacement and acceleration of wall structure in time domain analyzed to evaluate the stability under the dynamic train load.

  • PDF

Structural damage identification with output-only measurements using modified Jaya algorithm and Tikhonov regularization method

  • Guangcai Zhang;Chunfeng Wan;Liyu Xie;Songtao Xue
    • Smart Structures and Systems
    • /
    • v.31 no.3
    • /
    • pp.229-245
    • /
    • 2023
  • The absence of excitation measurements may pose a big challenge in the application of structural damage identification owing to the fact that substantial effort is needed to reconstruct or identify unknown input force. To address this issue, in this paper, an iterative strategy, a synergy of Tikhonov regularization method for force identification and modified Jaya algorithm (M-Jaya) for stiffness parameter identification, is developed for damage identification with partial output-only responses. On the one hand, the probabilistic clustering learning technique and nonlinear updating equation are introduced to improve the performance of standard Jaya algorithm. On the other hand, to deal with the difficulty of selection the appropriate regularization parameters in traditional Tikhonov regularization, an improved L-curve method based on B-spline interpolation function is presented. The applicability and effectiveness of the iterative strategy for simultaneous identification of structural damages and unknown input excitation is validated by numerical simulation on a 21-bar truss structure subjected to ambient excitation under noise free and contaminated measurements cases, as well as a series of experimental tests on a five-floor steel frame structure excited by sinusoidal force. The results from these numerical and experimental studies demonstrate that the proposed identification strategy can accurately and effectively identify damage locations and extents without the requirement of force measurements. The proposed M-Jaya algorithm provides more satisfactory performance than genetic algorithm, Gaussian bare-bones artificial bee colony and Jaya algorithm.

Analytical Method on PSC I Girder with Strengthening of External Tendon (외부강선으로 보강되는 PSC I 합성거더의 해석 기법)

  • Park, Jae-Guen;Lee, Byeong-Ju;Kim, Moon-Young;Shin, Hyun-Mock
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.697-704
    • /
    • 2008
  • This paper presents an analytical prediction of Nonlinear characteristics of prestressed concrete bridges by strengthened of externally tendon considering construction sequence, using unbonded tendon element and beam-column element based on flexibility method. Unbonded tendon model can represent unbounded tendon behavior in concrete of PSC structures and it can deal with the prestressing transfer of posttensioned structures and calculate prestressed concrete structures more efficiently. This tendon model made up the several nodes and segment, therefore a real tendon of same geometry in the prestressed concrete structure can be simulated the one element. The beam-column element was developed with reinforced concrete material nonlinearities which are based on the smeared crack concept. The fiber hysteresis rule of beam-column element is derived from the uniaxial constitutive relations of concrete and reinforcing steel fibers. The formulation of beam-column element is based on flexibility. Beam-column element and unbonded tendon element were be involved in A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), that were used the analysis of RC and PSC structures. The proposed numerical method for prestressed concrete structures by strengthened of externally tendon is verified by comparison with reliable experimental results.

Performance Evaluation of Structure Strengthening Using Sprayed FRP Technique (분사식 FRP공법을 이용한 구조물 보강 성능평가)

  • Chang, Chun-Ho;Jang, Kwang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.4 s.56
    • /
    • pp.126-136
    • /
    • 2009
  • The sprayed FRP strengthening technique is combining the Glass fiber and Polyester resin in open air and spraying randomly at concrete's surface with high-speed compressed air. Then it strengthens the structures with a new technique evaluated the structural performance. We applied it to concrete beam and tested for flexural strength, depended on Korea Standard(KS F 2408). Then based on the result of flexural strength, the properties were proposed that applying to structures. Based on the experiment, we have evaluated structural performance by the experiment. 1/5 scale prestressed concrete I-beam were made by Korean Highway's typical drawing in 1993. With these test results, 49.8% increased in flexural strength, improvement of the behavior of serviceability state, and strengthening was surely effective for controlling deflection and crack of structure. Consequently, it can be summarized that Sprayed FRP technique has prospect to improve the performance of structure.

A Study on the Optimal Initial Stress-Finding of Structures Stabilized by Cable-Tension (장력안정 구조물의 최적초기응력 탐색에 관한 연구)

  • 최옥훈;한상을;권택진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.287-294
    • /
    • 1999
  • The tensegrity structure by prestressed cable, which may have large freedom in scale and form and therefore are received much attention from the view points of their light weight and aesthetics, is a very flexible and geometrically unstable structure because the cable material has little initial rigidity. For the stable self-equilibrated state of the usually very deformable structure, the method to find the optimal initial stress by the shape analysis is proposed in this paper. The proposed procedure is to derive the nonlinear finite element formula of cable and truss members considering geometric nonlinearity and used to modified load incremental method adding to Newton-Raphson method with the proposed condition for optimal initial stress. The result of the shape analysis for the tensegrity structure with the radius of 30m is shown the almost approximated shape to architectural shape and the changed procedure of initial stress

  • PDF

Analytical Method of Prestressed Concrete Members with Unbonded Tendons (부착되지 않은 텐돈을 갖는 프리스트레스트 콘크리트부재의 해석)

  • 문정호;이리형
    • Computational Structural Engineering
    • /
    • v.8 no.4
    • /
    • pp.75-85
    • /
    • 1995
  • The purpose of the present study is to develop a computer program which can be used to analyze prestressed concrete structures containing either bonded or unbonded tendons. To accomplish this, first, the concrete, nonprestressed, and prestressed steels are modeled with cyclic constitutive laws to take into account the various loading effects. Then, the hybrid-type element method is derived to improve the computations capability of stresses and strains, especially for the unbonded tendon. Since it allows one to determine the cross-sectional deformations in an element without any assumptions for its deformed shape, the element length can be much longer than that of the conventional finite element method. In order to achieve such a long element, various integral schemes are examined to implement them into the program. Then, the computational method for prestressing effects is developed consistently with the analytical method for the structure. Finally, analytical studies for actual tests were carried out to verify the program developed in this study.

  • PDF

Long-Term Prediction of Prestress in Concrete Bridge by Nonlinear Regression Analysis Method (비선형 회귀분석기법을 이용한 콘크리트 교량 프리스트레스의 장기 예측)

  • Yang, In-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.507-515
    • /
    • 2006
  • The purpose of the paper is to propose a method to give a more accurate prediction of prestress changes in prestressed concrete(PSC) bridges. The statistical approach of the method is using the measurement data of the structural system to develop a nonlinear regression analysis. Long-term prediction of prestress is achieved using nonlinear regression analysis. The proposed method is applied to the prediction of prestress of an actual prestressed concrete box girder bridge. The present study represents that confidence interval of long-term prediction becomes progressively narrower with the increase of in-situ measurement data. Therefore, the numerical results prove that a more realistic long-term prediction of prestress changes in PSC structures can be achieved by employing the proposed method. The prediction results can be efficiently used to evaluate prestress during the service life of structure so that the remaining prestress exceeds the control criteria.

Experimental Study of External Prestressing Strengthening Using Jacket-Base Anchorage System. (자켓-받침형 정착장치를 이용한 외부강선 보강 효과의 실험적 연구)

  • 김형규;양동석;박선규;곽수현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.457-462
    • /
    • 2002
  • Generally speaking, durability, load carrying capacity and the life of structure becomes to be shortened in all structures as time passed. Also, we have to repair and reinforce because of tile decrease of the traffic volume and overloaded vehicles in the bridge. External prestressing method is most popular and effective strengthening method which can be used for the prestressed concrete-girders. When strengthening with external prestressing method, there are many ways to install anchorage system. But, These methods have many faults. For example, the achorage force is so small or an anchorage system installation damages an existing structure. So, this paper suggested a new anchorage system to strengthen without any damage to the structure and then confirm the increase of durability and the properties of behavior with experimentation.

  • PDF

Experimental Study on the Behaviore of Anchorage for Externally Prestressed CFRP Laminate (외부긴장 보강을 위한 CFRP 판의 정착부 거동 실험)

  • You Young-Jun;Park Jong-Sup;Park Young-Hwan;Jung Woo-Tai;Kang Jae Yun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.17-20
    • /
    • 2004
  • FRP strengthening system that bonds FRP sheet or laminate underneath structure has been used popularly thesedays. The failure of this bonding system occurs mainly at the interface of bonded surface abruptly. So it is difficult to expect the failure and FRP can't show its full material capacity that makes it uneconomically. By that reason, KICT proposed a system to install FRP aminate to structure for strengthening not by bondging but by unbonding. It is to install both ends of FRP laminate by anchoring underneath structure without bonding. Then, the failure is not an interfacial problem any more, it is governed by mechanical anchoring. This paper includes an experimental study about anchoring system for prestressing CFRP laminate.

  • PDF

Fatigue performance of a new type PSC girder (신형식 PSC거더의 피로 성능)

  • Choi, Sang-Hyun;Lee, Chang-Soo;Kim, Tae-Kyun;Eui, Chul-Soo
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.965-972
    • /
    • 2011
  • Unlike metallic materials, the importance of fatigue performance of concrete has been ignored. However, it is reported that environmental effects, if it cause deterioration, may increase the risk of fatigue failure under repeated loadings. In case of railroad bridges, the risk may increase due to highly periodic, repetitive, heavier nature of train load, which runs through the fixed passage called the track. Especially, when new material or structure is implemented for a main bridge member, experimental validation should be performed to avoid damage or failure due to unexpected behavior. In this paper, the fatigue performance of an IT girder is examined via a repeated loading test. The IT girder is a new type of a prestressed concrete (PSC) girder with two prestressed H-beams in the top of the girder, which provide additional sectional capacity, and it can be applied to the span longer than 30m which is a typical limit for a usual PSC girder. To obtain the fatigue performance, a 10m IT girder specimen is designed, and a repeated load test is performed by applying the cyclic load two million times. The fatigue performance of the girder is examined according to the Japanese and the CEB-FIB design codes. The fatigue test result shows that the IT girder satisfies both design codes.

  • PDF