• 제목/요약/키워드: prestressed reinforced concrete structures

검색결과 106건 처리시간 0.017초

Shear-Strengthening of Reinforced & Prestressed Concrete Beams Using FRP: Part I - Review of Previous Research

  • Ary, Moustapha Ibrahim;Kang, Thomas H.K.
    • International Journal of Concrete Structures and Materials
    • /
    • 제6권1호
    • /
    • pp.41-47
    • /
    • 2012
  • Fiber-Reinforced Polymers (FRP) are used to enhance the behavior of structural components in either shear or flexure. The research conducted in this paper was mainly focused on the shear-strengthening of reinforced and prestressed concrete beams using FRP. The main objective of the research was to identify the parameters affecting the shear capacity provided by FRP and evaluate the accuracy of analytical models. A review of prior experimental data showed that the available analytical models used to estimate the added shear capacity of FRP struggle to provide a unified design equation that can predict accurately the shear contribution of externally applied FRP. In this study, the ACI 440.2R-$08^1$ model and the model developed by Triantafillou and Antonopoulos$^2$ were compared with the prior experimental data. Both analytical models failed to provide a satisfactory prediction of the FRP shear capacity. This study provides insights into potential reasons for the unsatisfactory prediction.

Experiments and theory for progressive collapse resistance of ECC-concrete composite beam-column substructures

  • Weihong Qin;Wang Song;Peng Feng;Zhuo Xi;Tongqing Zhang
    • Structural Engineering and Mechanics
    • /
    • 제85권1호
    • /
    • pp.65-80
    • /
    • 2023
  • To explore the effect of Engineered Cementitious Composite (ECC) on improving the progressive collapse resistance of reinforced concrete frames under a middle column removal scenario, six beam-column substructures were tested by quasistatic vertical loading. Among the six specimens, four were ECC-concrete composite specimens consisting of different depth of ECC at the bottom or top of the beam and concrete in the rest of the beam, while the other two are ordinary reinforced concrete specimens with different concrete strength grades for comparison. The experimental results demonstrated that ECC-concrete composite specimens can improve the bearing capacity of a beam-column substructure at the stages of compressive arch action (CAA) and catenary action in comparison with ordinary concrete specimen. Under the same depth of ECC, the progressive collapse resistance of a specimen with ECC at the beam bottom was superior to that at the beam top. With the increase of the proportion of ECC arranged at the beam bottom, the bearing capacity of a composite substructure was increased, but the increase rate slows down with the proportion. Meanwhile, the nonlinear numerical analysis software MSC Marc was used to simulate the whole loading process of the six specimens. Theoretical formulas to calculate the capacities of ECC-concrete composite specimens at the stages of flexural action, CAA and catenary action are proposed. Based on the research results, this study suggests that ECC should be laid out at the beam bottom and the layout depth should be within 25% of the total beam depth.

Fatigue Assessment Model of Corroded RC Beams Strengthened with Prestressed CFRP Sheets

  • Song, Li;Hou, Jian
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권2호
    • /
    • pp.247-259
    • /
    • 2017
  • This paper presents a fatigue assessment model that was developed for corroded reinforced concrete (RC) beams strengthened using prestressed carbon fiber-reinforced polymer (CFRP) sheets. The proposed model considers the fatigue properties of the constituent materials as well as the section equilibrium. The model provides a rational approach that can be used to explicitly assess the failure mode, fatigue life, fatigue strength, stiffness, and post-fatigue ultimate capacity of corroded beams strengthened with prestressed CFRP. A parametric analysis demonstrated that the controlling factor for the fatigue behavior of the beams is the fatigue behavior of the corroded steel bars. Strengthening with one layer of non-prestressed CFRP sheets restored the fatigue behavior of beams with rebar at a low corrosion degree to the level of the uncorroded beams, while strengthening with 20- and 30%-prestressed CFRP sheets restored the fatigue behavior of the beams with medium and high corrosion degrees, respectively, to the values of the uncorroded beams. Under cyclic fatigue loading, the factors for the strengthening design of corroded RC beams fall in the order of stiffness, fatigue life, fatigue strength, and ultimate capacity.

폭발하중을 받는 프리스트레스트 콘크리트 패널의 거동 (Behavior of Prestressed Concrete Panels under Blast Load)

  • 조은선;김민숙;박종일;이영학
    • 한국전산구조공학회논문집
    • /
    • 제27권2호
    • /
    • pp.113-120
    • /
    • 2014
  • 본 논문은 폭발하중을 받는 네 가지 부재의 거동을 해석하여 프리스트레스의 폭발에 대한 저항 효과를 검증하고자 하였다. 프리스트레스를 도입한 구조물 사용이 증가하고 있지만 그에 관한 방폭 연구는 미비한 실정이다. 콘크리트 패널, 철근 콘크리트 패널, 프리스트레스를 도입한 콘크리트 패널, 프리스트레스를 도입한 철근 콘크리트 패널을 변수로 TNT 500Kg을 이격거리 3m 위치에서 폭파시키는 시나리오를 가정하였다. 해석결과, 콘크리트와 철근 콘크리트 부재는 폭발이 발생한 후 지속적으로 변형이 발생하지만 프리스트레스를 도입한 패널은 폭발 시 초기에만 변형이 발생하는 결과를 볼 수 있었다. 이는 프리스트레스를 도입한 부재가 폭발하중에 대해 균열과 파괴를 제어한다는 것을 알 수 있다.

Multiscale modeling of reinforced/prestressed concrete thin-walled structures

  • Laskar, Arghadeep;Zhong, Jianxia;Mo, Y.L.;Hsu, Thomas T.C.
    • Interaction and multiscale mechanics
    • /
    • 제2권1호
    • /
    • pp.69-89
    • /
    • 2009
  • Reinforced and prestressed concrete (RC and PC) thin walls are crucial to the safety and serviceability of structures subjected to shear. The shear strengths of elements in walls depend strongly on the softening of concrete struts in the principal compression direction due to the principal tension in the perpendicular direction. The past three decades have seen a rapid development of knowledge in shear of reinforced concrete structures. Various rational models have been proposed that are based on the smeared-crack concept and can satisfy Navier's three principles of mechanics of materials (i.e., stress equilibrium, strain compatibility and constitutive laws). The Cyclic Softened Membrane Model (CSMM) is one such rational model developed at the University of Houston, which is being efficiently used to predict the behavior of RC/PC structures critical in shear. CSMM for RC has already been implemented into finite element framework of OpenSees (Fenves 2005) to come up with a finite element program called Simulation of Reinforced Concrete Structures (SRCS) (Zhong 2005, Mo et al. 2008). CSMM for PC is being currently implemented into SRCS to make the program applicable to reinforced as well as prestressed concrete. The generalized program is called Simulation of Concrete Structures (SCS). In this paper, the CSMM for RC/PC in material scale is first introduced. Basically, the constitutive relationships of the materials, including uniaxial constitutive relationship of concrete, uniaxial constitutive relationships of reinforcements embedded in concrete and constitutive relationship of concrete in shear, are determined by testing RC/PC full-scale panels in a Universal Panel Tester available at the University of Houston. The formulation in element scale is then derived, including equilibrium and compatibility equations, relationship between biaxial strains and uniaxial strains, material stiffness matrix and RC plane stress element. Finally the formulated results with RC/PC plane stress elements are implemented in structure scale into a finite element program based on the framework of OpenSees to predict the structural behavior of RC/PC thin-walled structures subjected to earthquake-type loading. The accuracy of the multiscale modeling technique is validated by comparing the simulated responses of RC shear walls subjected to reversed cyclic loading and shake table excitations with test data. The response of a post tensioned precast column under reversed cyclic loads has also been simulated to check the accuracy of SCS which is currently under development. This multiscale modeling technique greatly improves the simulation capability of RC thin-walled structures available to researchers and engineers.

Mechanical properties of concrete beams reinforced with CFRP prestressed prisms under reverse cyclic loading

  • Liang, Jiongfeng;Yu, Deng;Wang, Jianbao;Yi, Pinghua
    • Earthquakes and Structures
    • /
    • 제11권2호
    • /
    • pp.315-326
    • /
    • 2016
  • This paper presents the results of cyclic loading tests on concrete beams reinforced with various reinforcement, including ordinary steel bars, CFRP bars and CFRP prestressed concrete prisms(PCP). The main variable in the test program was the level of prestress and the cross section of PCP. The seismic performance indexes including hysteretic loops, skeleton curve, ductility, energy dissipation capacity and stiffness degradation were analyzed. The results show that the CFRP prestressed concrete prisms as flexural reinforcement of concrete beams has good seismic performance. And the ductility and the energy dissipation capacity were good, the hysteresis loops were full and had large area.

PSC 구조물의 비선형 거동 예측에 관한 해석적 연구 (Analytical study on prediction of nonlinear behavior of PSC structures)

  • 박재근;오명석;최정호;신현목
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.442-445
    • /
    • 2006
  • This paper presents an analytical prediction of nonlinear characteristics and behavior characteristics PSC structures with un-bonded tendon system. In this paper, a numerical model for un-bonded tendon is proposed based on the finite element method, which can represent straight or curved un-bonded tendon behavior. this model and time-dependent material model used to investigate the time-dependent behavior of un-bonded prestressed concrete structures. The accuracy and objectivity of the assessment process may be enhanced by the use of sophisticated nonlinear finite element analysis program. A computer program, named RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of concrete structures and steel plate was used. The material nonlinearities are taken into account by comprising the tension, compression, and shear models of cracked concrete and models for reinforcements and tendons in the concrete. The smeared crack approach is incorporated. It accounts for the aging, creep and shrinkage of concrete and the stress relaxation of prestressed steel. The proposed un-bonded tendon model and numerical method of un-bonded prestressed concrete structures is verified by comparison with reliable experimental results.

  • PDF

Full-scale testing on the flexural behavior of an innovative dovetail UHPC joint of composite bridges

  • Qi, Jianan;Cheng, Zhao;Wang, Jingquan;Zhu, Yutong;Li, Wenchao
    • Structural Engineering and Mechanics
    • /
    • 제75권1호
    • /
    • pp.49-57
    • /
    • 2020
  • This paper presents a full-scale experimental test to investigate the flexural behavior of an innovative dovetail ultra-high performance concrete (UHPC) joint designed for the 5th Nanjing Yangtze River Bridge. The test specimen had a dimension of 3600 × 1600 × 170 mm, in accordance with the real bridge. The failure mode, crack pattern and structural response were presented. The ductility and stiffness degradation of the tested specimens were explicitly discussed. Test results indicated that different from conventional reinforced concrete slabs, well-distributed cracks with small spacing were observed for UHPC joint slabs at failure. The average nominal flexural cracking strength of the test specimens was 7.7 MPa, signifying good crack resistance of the proposed dovetail UHPC joint. It is recommended that high grade reinforcement be cooperatively used to take full advantage of the superior mechanical property of UHPC. A new ductility index, expressed by dividing the ultimate deflection by flexural cracking deflection, was introduced to evaluate the post-cracking ductility capacity. Finally, a strut-and-tie (STM) model was developed to predict the ultimate strength of the proposed UHPC joint.

Development of a novel self-centering buckling-restrained brace with BFRP composite tendons

  • Zhou, Z.;He, X.T.;Wu, J.;Wang, C.L.;Meng, S.P.
    • Steel and Composite Structures
    • /
    • 제16권5호
    • /
    • pp.491-506
    • /
    • 2014
  • Buckling-restrained braces (BRBs) have excellent hysteretic behavior while buckling-restrained braced frames (BRBFs) are susceptible to residual lateral deformations. To address this drawback, a novel self-centering (SC) BRB with Basalt fiber reinforced polymer (BFRP) composite tendons is presented in this work. The configuration and mechanics of proposed BFRP-SC-BRBs are first discussed. Then an 1840-mm-long BFRP-SC-BRB specimen is fabricated and tested to verify its hysteric and self-centering performance. The tested specimen has an expected flag-shaped hysteresis character, showing a distinct self-centering tendency. During the test, the residual deformation of the specimen is only about 0.6 mm. The gap between anchorage plates and welding ends of bracing tubes performs as expected with the maximum opening value 6 mm when brace is in compression. The OpenSEES software is employed to conduct numerical analysis. Experiment results are used to validate the modeling methodology. Then the proposed numerical model is used to evaluate the influence of initial prestress, tendon diameter and core plate thickness on the performance of BFRP-SC-BRBs. Results show that both the increase of initial prestress and tendon diameters can obviously improve the self-centering effect of BFRP-SC-BRBs. With the increase of core plate thickness, the energy dissipation is improved while the residual deformation is generated when the core plate strength exceeds initial prestress force.