• 제목/요약/키워드: prestressed reinforced concrete bridge

검색결과 46건 처리시간 0.027초

Finite element analysis of CFRP laminate repairs on damaged end regions of prestressed concrete bridge girders

  • Shaw, Ian D.;Andrawes, Bassem
    • Advances in Computational Design
    • /
    • 제2권2호
    • /
    • pp.147-168
    • /
    • 2017
  • Over the past couple decades, externally bonded fiber reinforced polymer (FRP) composites have emerged as a repair and strengthening material for many concrete infrastructure applications. This paper presents an analytical investigation of the use of carbon FRP (CFRP) for a specific problem that occurs in concrete bridge girders wherein the girder ends are damaged by excessive exposure to deicing salts and numerous freezing/thawing cycles. A 3D finite element (FE) model of a full scale prestressed concrete (PC) I-girder is used to investigate the effect of damage to the cover concrete and stirrups in the end region of the girder. Parametric studies are performed using externally bonded CFRP shear laminates to determine the most effective repair schemes for the damaged end region under a short shear span-to-depth ratio. Experimental results on shear pull off tests of CFRP laminates that have undergone accelerated aging are used to calibrate a bond stress-slip model for the interface between the FRP and concrete substrate and approximate the reduced bond stress-slip properties associated with exposure to the environment that causes this type of end region damage. The results of these analyses indicate that this particular application of this material can be effective in recovering the original strength of PC bridge girders with damaged end regions, even after environmental aging.

Strengthening of steel-concrete composite beams with prestressed CFRP plates using an innovative anchorage system

  • Wan, Shi-cheng;Huang, Qiao;Guan, Jian
    • Steel and Composite Structures
    • /
    • 제32권1호
    • /
    • pp.21-35
    • /
    • 2019
  • This study investigates the flexural behavior of steel-concrete composite beams strengthened with prestressed carbon fiber-reinforced polymer (CFRP) plates. An innovative mechanical anchorage system was developed. The components of the system can be easily assembled on site before applying a prestressing force, and removed from the structures after strengthening is completed. A total of seven steel-concrete composite specimens including four simply supported beams strengthened at the positive moment region and three continuous beams strengthened at the negative moment region were tested statically until failure. Experimental results showed that the use of prestressed CFRP plates enhanced the flexural capacity and reduced the mid-span deflection of the beams. Furthermore, by prestressing the CFRP laminates, the material was used more efficiently, and the crack resistance of the continuous composite specimens at the central support was significantly improved after strengthening. Overall, the anchorage system proved to be practical and feasible for the strengthening of steel-concrete composite beams. The theoretical analysis of ultimate bearing capacity is reported, and good agreement between analytical values and experimental results is achieved.

외부긴장재와 연속화에 의한 프리스트레스트 콘크리트 거더교의 성능평가 (Performance Evaluation of Prestressed Concrete Girder Bridges by External Tendon and Continuous Beams)

  • 박승범;방명석;홍석주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.681-684
    • /
    • 1999
  • The development of external prestressing methods has been one of the major trends in the concrete bridge constructions over the past decades. One of the promising methods to enhance the flexural strength of a externally prestressed girder is to place the tendons with large eccentricities. The test results in this study showed that the external prestressing of a composite girder increased the range of the elastic behavior, reduced deflections, increased ultimate strength, and added to the redundancy by providing the multiple stress paths. This study was conducted on the concrete bridges reinforced by the continuous girders and the external prestressing.

  • PDF

Full-scale testing on the flexural behavior of an innovative dovetail UHPC joint of composite bridges

  • Qi, Jianan;Cheng, Zhao;Wang, Jingquan;Zhu, Yutong;Li, Wenchao
    • Structural Engineering and Mechanics
    • /
    • 제75권1호
    • /
    • pp.49-57
    • /
    • 2020
  • This paper presents a full-scale experimental test to investigate the flexural behavior of an innovative dovetail ultra-high performance concrete (UHPC) joint designed for the 5th Nanjing Yangtze River Bridge. The test specimen had a dimension of 3600 × 1600 × 170 mm, in accordance with the real bridge. The failure mode, crack pattern and structural response were presented. The ductility and stiffness degradation of the tested specimens were explicitly discussed. Test results indicated that different from conventional reinforced concrete slabs, well-distributed cracks with small spacing were observed for UHPC joint slabs at failure. The average nominal flexural cracking strength of the test specimens was 7.7 MPa, signifying good crack resistance of the proposed dovetail UHPC joint. It is recommended that high grade reinforcement be cooperatively used to take full advantage of the superior mechanical property of UHPC. A new ductility index, expressed by dividing the ultimate deflection by flexural cracking deflection, was introduced to evaluate the post-cracking ductility capacity. Finally, a strut-and-tie (STM) model was developed to predict the ultimate strength of the proposed UHPC joint.

A parametric study of optimum tall piers for railway bridge viaducts

  • Martinez-Martin, Francisco J.;Gonzalez-Vidosa, Fernando;Hospitaler, Antonio;Yepes, Victor
    • Structural Engineering and Mechanics
    • /
    • 제45권6호
    • /
    • pp.723-740
    • /
    • 2013
  • This paper presents a parametric study of reinforced concrete bridge tall piers with hollow, rectangular sections. Such piers are typically used in railway construction of prestressed concrete viaducts. Twenty one different piers have been studied with seven column heights of 40, 50, 60, 70, 80, 90 and 100 m and three types of 10-span continuous viaducts, whose main span lengths are 40, 50 and 60 m. The piers studied are intermediate columns placed in the middle of the viaducts. The total number of optimization design variables varies from 139 for piers with column height of 40 m to 307 for piers with column height of 100 m. Further, the results presented are of much value for the preliminary design of the piers of prestressed concrete viaducts of high speed railway lines.

Comparison of Totally Prefabricated Bridge Substructure Designed According to Korea Highway Bridge Design (KHBD) and AASHTO-LRFD

  • Kim, Tae-Hoon
    • International Journal of Concrete Structures and Materials
    • /
    • 제7권4호
    • /
    • pp.319-332
    • /
    • 2013
  • The purpose of this study was to investigate the design comparison of totally prefabricated bridge substructure system. Prefabricated bridge substructure systems are a relatively new and versatile alternative in substructure design that can offer numerous benefits. The system can reduce the work load at a construction site and can result in shorter construction periods. The prefabricated bridge substructures are designed by the methods of Korea Highway Bridge Code (KHBD) and load and resistance factor design (AASHTO-LRFD). For the design, the KHBD with DB-24 and DL-24 live loads is used. This study evaluates the design method of KHBD (2005) and AASHTO-LRFD (2007) for totally prefabricated bridge substructure systems. The computer program, reinforced concrete analysis in higher evaluation system technology was used for the analysis of reinforced concrete structures. A bonded tendon element is used based on the finite element method, and can represent the interaction between the tendon and concrete of a prestressed concrete member. A joint element is used in order to predict the inelastic behaviors of segmental joints. This study documents the design comparison of totally prefabricated bridge substructure and presents conclusions and design recommendations based on the analytical findings.

Behavior of Laterally Damaged Prestressed Concrete Bridge Girders Repaired with CFRP Laminates Under Static and Fatigue Loading

  • ElSafty, Adel;Graeff, Matthew K.;Fallaha, Sam
    • International Journal of Concrete Structures and Materials
    • /
    • 제8권1호
    • /
    • pp.43-59
    • /
    • 2014
  • Many bridges are subject to lateral damage for their girders due to impact by over-height vehicles collision. In this study, the optimum configurations of carbon fiber reinforced polymers (CFRP) laminates were investigated to repair the laterally damaged prestressed concrete (PS) bridge girders. Experimental and analytical investigations were conducted to study the flexural behavior of 13 half-scale AASHTO type II PS girders under both static and fatigue loading. Lateral impact damage due to vehicle collision was simulated by sawing through the concrete of the bottom flange and slicing through one of the prestressing strands. The damaged concrete was repaired and CFRP systems (longitudinal soffit laminates and evenly spaced transverse U-wraps) were applied to restore the original flexural capacity and mitigate debonding of soffit CFRP longitudinal laminates. In addition to the static load tests for ten girders, three more girders were tested under fatigue loading cycles to investigate the behavior under simulated traffic conditions. Measurements of the applied load, the deflection at five different locations, strains along the cross-section height at mid-span, and multiple strains longitudinally along the bottom soffit were recorded. The study investigated and recommended the proper CFRP repair design in terms of the CFRP longitudinal layers and U-wrapping spacing to obtain flexural capacity improvement and desired failure modes for the repaired girders. Test results showed that with proper detailing, CFRP systems can be designed to restore the lost flexural capacity, sustain the fatigue load cycles, and maintain the desired failure mode.

Flexural ductility of reinforced and prestressed concrete sections with corrugated steel webs

  • Chen, X.C.;Au, F.T.K.;Bai, Z.Z.;Li, Z.H.;Jiang, R.J.
    • Computers and Concrete
    • /
    • 제16권4호
    • /
    • pp.625-642
    • /
    • 2015
  • Prestressed concrete bridges with corrugated steel webs have emerged as one of the promising bridge forms. This structural form provides excellent structural efficiency with the concrete flanges primarily taking bending and the corrugated steel webs primarily taking shear. In the design of this type of bridges, the flexural ductility and deformability as well as strength need to be carefully examined. Evaluation of these safety-related attributes requires the estimation of full-range behaviour. In this study, the full-range behaviour of beam sections with corrugated steel webs is evaluated by means of a nonlinear analytical method which uses the actual stress-strain curves of the materials and considers the path-dependence of materials. In view of the different behaviour of components and the large shear deformation of corrugated steel webs with negligible longitudinal stiffness, the assumption that plane sections remain plane may no longer be valid. The interaction between shear deformation and local bending of flanges may cause additional stress in flanges, which is considered in this study. The numerical results obtained are compared with experimental results for verification. A parametric study is undertaken to clarify the effects of various parameters on ductility, deformability and strength.

연속화와 외부 프리스트레스 도입에 의한 노후된 콘크리트 거더교의 성능향상에 관한 연구 (A Study on Performance Elevation of the deteriorated Concrete Girder Bridge by Continuous and External Tendons)

  • 박승범;홍석주
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제4권2호
    • /
    • pp.159-166
    • /
    • 2000
  • The development of external prestressing methods has been one of the major trends in the concrete bridge constructions over the past decades. One of the promising methods to enhance the flexural strength of a externally prestressed girder is to place the tendons with large eccentricities. The analysis and design of composite girders prestressed by external tendons involve difficulties related mainly to the position of anchorages and the construction sequences. This study was conducted on the concrete bridges reinforced by the continuous girders and the external prestressing. The test results in this study showed that the external prestressing of a composite girder increased the range of the elastic behavior, reduced deflections, increased ultimate strength, and added to the redundancy by providing the multiple stress paths.

  • PDF

프리캐스트 세그먼트 PSC 교각의 성능평가를 위한 지진해석 (Seismic Analysis for Performance Assessment of Precast Segmental PSC Bridge Columns)

  • 김태훈;박세진;김영진;신현목
    • 한국지진공학회논문집
    • /
    • 제13권2호
    • /
    • pp.15-27
    • /
    • 2009
  • 이 연구는 지진하중을 받는 프리캐스트 세그먼트 PSC 교각의 지진거동을 파악하는데 그 목적이 있다. 사용된 프로그램은 철근콘크리트 구조물의 해석을 위한 RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology)이다. 사용된 부착 또는 비부착 텐던요소는 유한요소법에 근거하며 프리스트레스트 콘크리트 부재의 콘크리트와 텐던의 상호작용을 구현할 수 있다. 그리고 수정된 접합요소는 세그먼트 접합부의 비탄성거동을 예측할 수 있다. 동적 평형방정식의 해는 HHT(Hilber-Hughes-Taylor) 법에 의한 수치적분으로 구하였다. 제안된 해석기법은 수치예제에 대하여 입력지진파에 따른 지진거동을 비교적 정확하게 예측하였다.