• 제목/요약/키워드: prestressed plate

검색결과 100건 처리시간 0.025초

New approach of composite wooden beam- reinforced concrete slab strengthened by external bonding of prestressed composite plate: Analysis and modeling

  • Tahar, Hassaine Daouadji;Tayeb, Bensatallah;Abderezak, Rabahi;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제78권3호
    • /
    • pp.319-332
    • /
    • 2021
  • The wood-concrete composite is an interesting solution in the field of Civil Engineering to create high performance bending elements for bridges, as well as in the building construction for the design of wood concrete floor systems. The authors of this paper has been working for the past few years on the development of the bonding process as applied to wood-concrete composite structures. Contrary to conventional joining connectors, this assembling technique does ensure an almost perfect connection between wood and concrete. This paper presents a careful theoretical investigation into interfacial stresses at the level of the two interfaces in composite wooden beam- reinforced concrete slab strengthened by external bonding of prestressed composite plate under a uniformly distributed load. The model is based on equilibrium and deformations compatibility requirements in all parts of the strengthened composite beam, i.e., the wooden beam, RC slab, the CFRP plate and the adhesive layer. The theoretical predictions are compared with other existing solutions. This research is helpful for the understanding on mechanical behaviour of the interface and design of the CFRP- wooden-concrete hybrid structures.

New technique for strengthening reinforced concrete beams with composite bonding steel plates

  • Yang, Su-hang;Cao, Shuang-yin;Gu, Rui-nan
    • Steel and Composite Structures
    • /
    • 제19권3호
    • /
    • pp.735-757
    • /
    • 2015
  • Composite bonding steel plate (CBSP) is a newly developed type of structure strengthened technique applicable to the existing RC beam. This composite structure is applicable to strengthening the existing beam bearing high load. The strengthened beam consists of two layers of epoxy bonding prestressed steel plates and the RC beam sandwiched in between. The bonding enclosed and prestressed U-shaped steel jackets are applied at the beam sides. This technique is adopted in case of structures with high longitudinal reinforcing bar ratio and impracticable unloading. The prestress can be generated on the strengthening steel plates and jackets by using the CBSP technique before loading. The test results of full-scale CBSP strengthened beams show that the strength and stiffness are enhanced without reduction of their ductility. It is demonstrated that the strain hysteresis effect can be effectively overcome after prestressing on the steel plates by using such technique. The applied plates and jackets can jointly behave together with the existing beam under the action of epoxy bonding and the mechanical anchorage of the steel jackets. The simplified formulas are proposed to calculate the prestress and the ultimate capacities of strengthened beams. The accuracy of formulas was verified with the experimental results.

탄소판으로 외부 긴장된 철근콘크리트보의 휨거동에 관한 실험연구 (An Experimental Study on the Flexural Behavior of RC Beams Strengthened with Externally Prestressed CFRP Plate)

  • 박종섭;박영환;유영준;정우태
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.72-75
    • /
    • 2004
  • Carbon Fiber Reinforced Polymer(CFRP) composites are widely applied to strengthen deteriorated concrete structures. This paper presents the experimental results of the performance of reinforced concrete(RC) beams strengthened with externally prestressed CFRP plates. Simple beams with 3 m span length were tested to investigate the effect of prestressing force of CFRP plates on the flexural behavior of externally strengthened RC beams.

  • PDF

프리스트레스트 콘크리트 사장교 정착부의 응력특성 (Stress Properties for Anchorage Zone of Cable Stayed Bridge Prestress Concrete)

  • 조병완;변윤주;최준혁;태기호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.531-536
    • /
    • 2002
  • The design of anchorage zone in prestressed concrete cable stayed bridges is very important area due to the more accurate analysis is needed to estimate the behavior. In the study, since the cable anchorage zone in the prestressed concrete cable-stayed bridge is subject to a large amount of concentrated tendon forces, it shows very complicated stress distributions and causes a serious local cracks. Accordingly, It is necessary to investigate the parameters of affecting the stress distribution, such as the cable inclination, the position of anchor plate, the modeling method and the three dimensional effect. The tensile stress distribution of anchorage zone is compared to the actual design condition by varing the stiffness of spring element in the local modeling and an appropriate position of anchor plate is determined. These results would be elementary data to the stress state of anchorage zone and more efficient design.

  • PDF

직교 이방성 관통 다공 후판의 탄성 해석 (Elastic Analysis of Orthotropic Thick Plates with Perforated Many Holes)

  • 김우식;권택진
    • 한국공간구조학회논문집
    • /
    • 제2권1호
    • /
    • pp.59-65
    • /
    • 2002
  • The structures with many perforated openings are widely used as a load-carrying element in the fields of civil engineering works, top slab of prestressed concrete reactor vessel, petrochemical industries and the like. Perforated concrete plates are usually thick. Therefore, the effect of transverse shear deformation is not negligible. This paper describes a new analytical method of perforated plates combining both the finite element method for effective elastic constants and the usual method in solving orthotropic plate with transverse shear deformation.

  • PDF

보 이론에 의한 PSC 슬래브 교량의 해석 (Analysis of Prestressed Concrete Slab Bridge by the Beam Theory)

  • 한봉구;김덕현
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제7권2호
    • /
    • pp.115-124
    • /
    • 2003
  • A prestressed concrete slab bridge is analyzed by the specially orthotropic laminates theory. Both the geometry and the material of the cross section of the slab are considered symmetrical with respect to the mid-surface so that the bending extension coupling stiffness, $B_{ij}=0$, and $D_{16}=D_{26}=0$. Each longitudinal and transverse steel layer is regarded as a lamina, and material constants of each lamina is calculated by the use of rule of mixture. This bridge with simple support is under uniformly distributed vertical and axial loads. In this paper, the finite difference method and the beam theory are used for analysis. The result of beam analysis is modified to obtain the solution of the plate analysis.

Stress intensity factors for double-edged cracked steel beams strengthened with CFRP plates

  • Wang, Hai-Tao;Wu, Gang;Pan, Yu-Yang;Zakari, Habeeb M.
    • Steel and Composite Structures
    • /
    • 제33권5호
    • /
    • pp.629-640
    • /
    • 2019
  • This paper presents a theoretical and finite element (FE) study on the stress intensity factors of double-edged cracked steel beams strengthened with carbon fiber reinforced polymer (CFRP) plates. By simplifying the tension flange of the steel beam using a steel plate in tension, the solutions obtained for the stress intensity factors of the double-edged cracked steel plate strengthened with CFRP plates were used to evaluate those of the steel beam specimens. The correction factor α1 was modified based on the transformed section method, and an additional correction factor φ was introduced into the expressions. Three-dimensional FE modeling was conducted to calculate the stress intensity factors. Numerous combinations of the specimen geometry, crack length, CFRP thickness and Young's modulus, adhesive thickness and shear modulus were analyzed. The numerical results were used to investigate the variations in the stress intensity factor and the additional correction factor φ. The proposed expressions are a function of applied stress, crack length, the ratio between the crack length and half the width of the tension flange, the stiffness ratio between the CFRP plate and tension flange, adhesive shear modulus and thickness. Finally, the proposed expressions were verified by comparing the theoretical and numerical results.

강재로 구속된 프리스트레스트 콘크리트 합성거더의 개발을 위한 실험연구 (Experimental Study for the Development of Steel-Confined Prestressed Concrete Girder)

  • 김정호;박경훈;황윤국;최영민;조효남
    • 한국강구조학회 논문집
    • /
    • 제14권5호통권60호
    • /
    • pp.593-602
    • /
    • 2002
  • 콘크리트와 강판, PS강재의 구조적 장점을 극대화하여 낮은 형고로 경간을 장대화할 수 있는 새로운 교량 상부구조형식으로서 강재로 구속된 프리스트레스트 콘크리트 합성거더(Steel-Confined Prestressed Concrete Girder; SCP Girder)를 개발하였다. 개발된 SCP 합성거더의 효과적인 설계 및 제작을 위하여 설계프로그램을 개발하고 제작절차를 확립하였다. 이를 바탕으로 설계된 SCP 합성거더를 실물크기로 제작하여 시공성을 확인하였으며, 재하실험을 통해 설계의 타당성과 구조적 안전성 및 실적용 가능성에 대하여 검증하였다.

Behavior of improved through-diaphragm connection to square tubular column under tensile loading

  • Qin, Ying;Zhang, Jing-Chen;Shi, Peng;Chen, Yi-Fu;Xu, Yao-Han;Shi, Zuo-Zheng
    • Structural Engineering and Mechanics
    • /
    • 제68권4호
    • /
    • pp.475-483
    • /
    • 2018
  • Square tubular columns are commonly used in moment resisting frames, while through-diaphragm connection is the most typical configuration detail to connect the H-shaped beam to the column. However, brittle fracture normally occurs at the complete joint penetration weld between the beam flange and the through-diaphragm due to the stress concentration caused by the geometrical discontinuity. Accordingly, three improved types of through-diaphragm are presented in this paper to provide smooth force flow path comparing to that of conventional connections. Tensile tests were conducted on four specimens and the results were analyzed in terms of failure modes, load-displacement response, yield and ultimate capacity, and initial stiffness. Furthermore, strain distributions on the through-diaphragm, the beam flange plate, and the column face were comprehensively evaluated and discussed. It was found that all the proposed three types of improved through-diaphragm connections were able to reduce the stress concentration in the welds between the beam flange and the through-diaphragm. Furthermore, the stress distribution in connection with longer tapered through-diaphragm was more uniform.

비부착 탄소섬유판 긴장재로 외부 긴장 보강된 철근콘크리트 보의 해석 (The Analysis for Reinforced Concrete Beams Strengthened with Externally Unbonded Prestressed CFRP Plates)

  • 박종섭;정우태;박영환;김철영
    • 대한토목학회논문집
    • /
    • 제28권4A호
    • /
    • pp.439-445
    • /
    • 2008
  • 본 논문에서는 비부착 CFRP판으로 긴장 보강된 철근콘크리트 보를 해석하기 위한 수정된 부착감소계수를 제안하였다. 기존의 비부착 강연선의 극한응력 해석식에 대한 분석을 통해 비부착 CFRP판 긴장재로 보강된 철근콘크리트 보에 대한 적용성을 검토하였으며, 적용상의 문제점을 도출하였다. 합리적인 비부착 CFRP판 극한응력 해석식을 제안하기 위해 부착 CFRP판 긴장재의 평균변형률 개념으로부터 비부착 CFRP판 긴장재의 보강길이와 하중 재하 형태에 따른 순수휨구간 길이가 고려된 확장된 부착감소계수를 제안하였다. 최종 부착감소계수는 기존의 비부착 CFRP판 긴장 보강보에 대한 실험연구 문헌의 실험결과를 이용한 통계적 방법으로 결정되었으며, 제안된 부착감소계수를 포함한 극한응력 해석식에 의해 계산된 값을 실험결과와 비교하여 제안식의 유효성을 검토하였다.