• Title/Summary/Keyword: prestressed composite

Search Result 173, Processing Time 0.025 seconds

Performance Evaluation of Prestressed Concrete Girder Bridges by External Tendon (외부긴장재를 이용한 프리스트레스트 콘크리트 거더교의 성능평가)

  • 박승범;방명석;홍석주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.685-688
    • /
    • 1999
  • The analysis and design of composite girders prestressed by external tendons involve difficulties related to the position of anchorages and the construction sequences. In this paper, the efficiency of the external tendon profiles and the position of anchorages in examined for the internal and external prestressing of statically indeterminate structures. It is shown that strengthening of a prestressed girder can be accomplished using a variety of methods; bonded external prestressing, tendon replacement and unbonded external prestressing.

  • PDF

A simplified matrix stiffness method for analysis of composite and prestressed beams

  • Deretic-Stojanovic, Biljana;Kostic, Svetlana M.
    • Steel and Composite Structures
    • /
    • v.24 no.1
    • /
    • pp.53-63
    • /
    • 2017
  • The paper presents the simplified matrix stiffness method for analysis of composite and prestressed beams. The method is based on the previously developed "exact" analysis method that uses the mathematical theory of linear integral operators to derive all relations without any mathematical simplifications besides inevitable idealizations related to the material rheological properties. However, the method is limited since the closed-form solution can be found only for specific forms of the concrete creep function. In this paper, the authors proposed the simplified analysis method by introducing the assumption that the unknown deformations change linearly with the concrete creep function. Adopting this assumption, the nonhomogeneous integral system of equations of the "exact" method simplifies to the system of algebraic equations that can be easily solved. Therefore, the proposed method is more suitable for practical applications. Its high level of accuracy in comparison to the "exact" method is preserved, which is illustrated on the numerical example. Also, it is more accurate than the well-known EM method.

Time dependent service load behaviour of prestressed composite tee beams

  • Uy, Brian
    • Structural Engineering and Mechanics
    • /
    • v.5 no.3
    • /
    • pp.307-327
    • /
    • 1997
  • This paper is concerned with the time dependent service load behaviour of prestressed composite tee beams. The effects of creep and shrinkage of the concrete slab are modelled using the age adjusted effective modulus method and a relaxation approach. The tendon strain is determined considering compatibility of deformations and equilibrium of forces between the tendon and the composite tee beam. A parametric study is undertaken to study the influence of various aspects on the stress, strain and deformations of the concrete slab, steel beam and prestressing tendon. The effect of loading type and tendon relaxation has also been considered for various types of prestressing tendon materials. Recommendations are then made in relation to adequate span to depth ratios for varying levels of prestressing force.

Shear Strength of Prestressed PC-CIP Composite Beams with Vertical Shear Reinforcement (전단 철근 보강된 프리스트레스 PC와 CIP 합성보의 전단강도)

  • Suh, Jung-Il;Park, Hong-Gun;Hong, Geon-Ho;Kang, Su-Min;Kim, Chul-Goo
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.399-409
    • /
    • 2015
  • Recently, the use of composite construction method using precast (PC) and cast-in-place (CIP) concrete is increased in modular construction. For PC members, pre-tensioning is used to improve efficiency of the structural performance. However, current design codes do not clearly define shear strength of prestressed PC-CIP composite members. In this study, 22 specimens were tested to evaluate shear strength of prestressed composite members with vertical shear reinforcement. The test variables were the area ratio of high-strength (60 MPa) to low-strength concrete (24 MPa), prestressing force of strands, shear span-to-depth ratio(a/d), and vertical shear reinforcement ratio. The test results showed the prestressing force did not completely restrain diagonal cracking of non-prestressed concrete in the web. Thus, the effect of prestress force was not insignificant in the effect for monolithic beams. The vertical shear strength and horizontal shear strength of the composite beams were compared with the strength predictions of KCI design method.

Dynamic Behavior of the Prestressed Composite Girder by Modal Tests and Moving Train Analysis (프리스트레스트 강합성 거더의 모달테스트 및 이동 열차하중 해석에 의한 동적거동)

  • Kim, Sung Il;Lee, Pil Goo;Lee, Jung Whee;Yeo, In Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.793-804
    • /
    • 2006
  • Various PSC and steel-concrete composite railway bridges are being developed for short-medium spans with structural and economic efficiency. According to the design concept, the prestressed composite girder bridge has the advantages of being lightweight and having low girder depth, with the capacity for long spans. However, the dynamic behavior under a passing train is one of the critical issues concerning these railway bridges designed with more flexibility. Therefore, it is very important to evaluate the modal parameters before performing dynamic analyses. In this paper, real-scale prestressed composite girders were fabricated as a test model and modal testing was carried out to evaluate modal parameters including natural frequency and modal damping ratio. During the modal testing, a digitally controlled vibration exciter as well as an impact hammer was applied to obtain frequency-response functions, and the modal parameters were also evaluated after the fracture of test models. With application of reliable properties from modal tests, the estimation of dynamic performances of prestressed composite girder railway bridges can be obtained from various parametric studies on dynamic behavior under the passage of a moving train.

New approach of composite wooden beam- reinforced concrete slab strengthened by external bonding of prestressed composite plate: Analysis and modeling

  • Tahar, Hassaine Daouadji;Tayeb, Bensatallah;Abderezak, Rabahi;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.319-332
    • /
    • 2021
  • The wood-concrete composite is an interesting solution in the field of Civil Engineering to create high performance bending elements for bridges, as well as in the building construction for the design of wood concrete floor systems. The authors of this paper has been working for the past few years on the development of the bonding process as applied to wood-concrete composite structures. Contrary to conventional joining connectors, this assembling technique does ensure an almost perfect connection between wood and concrete. This paper presents a careful theoretical investigation into interfacial stresses at the level of the two interfaces in composite wooden beam- reinforced concrete slab strengthened by external bonding of prestressed composite plate under a uniformly distributed load. The model is based on equilibrium and deformations compatibility requirements in all parts of the strengthened composite beam, i.e., the wooden beam, RC slab, the CFRP plate and the adhesive layer. The theoretical predictions are compared with other existing solutions. This research is helpful for the understanding on mechanical behaviour of the interface and design of the CFRP- wooden-concrete hybrid structures.

Long-term behavior of prestressed concrete beam with corrugated steel web under sustained load

  • Motlagh, Hamid Reza Ebrahimi;Rahai, Alireza
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.809-819
    • /
    • 2022
  • This paper proposes a method to predict the deflection of prestressed concrete (PC) beams with corrugated steel web (CSW) under constant load concerning time-dependent variation in concrete material. Over time, the top and bottom concrete slabs subjected to asymmetric compression experience shrinkage and creep deformations. Here, the classical Euler-Bernoulli beam theory assumption that the plane sections remain plane is not valid due to shear deformation of CSW. Therefore, this study presents a method based on the first-order shear deformation to find the long-term deflection of the composite beams under bending by considering time effects. Two experimental prestressed beams of this type were monitored under their self-weight over time, and the theoretical results were compared with those data. Additionally, 3D analytical models of the experimental beams were used according to material properties, and the results were compared with two previous cases. There was good consistency between the analytical and numerical results with low error, which increased by wave radius. It is concluded that the proposed method could reliably be used for design purposes.

Improvement in Long-term Behavior Estimation of Prestressed Composite Girders for Various Construction Sequences using Parametric Study (변수해석을 통한 프리스트레스트 합성거더의 시공단계별 장기거동 평가법 개선방안)

  • Bae, Doobyong;Oh, Chang Kook
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.4
    • /
    • pp.369-377
    • /
    • 2013
  • The age-adjusted effective modulus method has been known to provide more precise assessment than the traditional Yassumi method for long-term behavior estimation of prestressed composite girders. The age-adjusted effective modulus method, however, involves complicated calculation, thereby making the Yassumi method more prevalent in actual design. This study presents rational approaches to revise creep coefficients for the Yassumi method by using parametric study results obtained from the age-adjusted effective modulus method.

A Experimental Study on Bending Behaviors of Prestressed Hot-rolled H-Beam (프리스트레스된 압연강재보(H-BEAM)의 휨 거동에 대한 실험적 연구)

  • Yhim, Sung Soon;Jeong, Chan Haek
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.239-250
    • /
    • 2006
  • In this study, the experimental bending behaviors of an H-secti on-steel-beam-attached high-strength steel plate or steel beam were analyzed. Its structural performance was verified by comparing the results of the experiment and the analysis that were conducted. In fabricating an unprestressed composite beam using two members that have different strengths, the generated slip on the joint in proport problem because of the redistribution of force caused by the lose state of the joint. Therefore, when fabricating composite beams, it is important to load them with prestressed forces. Based on the results of the experiment that was conducted, the prestressed composite-steel-beam-attached steel plate or beam has a higher bending resistance and load-carrying capacit