Browse > Article
http://dx.doi.org/10.12989/scs.2022.43.6.809

Long-term behavior of prestressed concrete beam with corrugated steel web under sustained load  

Motlagh, Hamid Reza Ebrahimi (Department of Civil and Environmental Engineering, Amirkabir University of Technology (Tehran Polytechnic))
Rahai, Alireza (Department of Civil and Environmental Engineering, Amirkabir University of Technology (Tehran Polytechnic))
Publication Information
Steel and Composite Structures / v.43, no.6, 2022 , pp. 809-819 More about this Journal
Abstract
This paper proposes a method to predict the deflection of prestressed concrete (PC) beams with corrugated steel web (CSW) under constant load concerning time-dependent variation in concrete material. Over time, the top and bottom concrete slabs subjected to asymmetric compression experience shrinkage and creep deformations. Here, the classical Euler-Bernoulli beam theory assumption that the plane sections remain plane is not valid due to shear deformation of CSW. Therefore, this study presents a method based on the first-order shear deformation to find the long-term deflection of the composite beams under bending by considering time effects. Two experimental prestressed beams of this type were monitored under their self-weight over time, and the theoretical results were compared with those data. Additionally, 3D analytical models of the experimental beams were used according to material properties, and the results were compared with two previous cases. There was good consistency between the analytical and numerical results with low error, which increased by wave radius. It is concluded that the proposed method could reliably be used for design purposes.
Keywords
Corrugated Steel Web (CSW); creep; long-term deflection; Prestressed Concrete (PC); relaxation; shrinkage;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 ACI 209 (2008), ACI 209.2R-08 Guide for Modeling and Calculating Shrinkage and Creep in Hardened Concrete, Farmington Hills, MI.
2 Allen, H.G. (1969), Analysis and Design of Structural Sandwich Panel, Pergamon press, London.
3 Anami, K. and Sause, R. (2005), "Fatigue of web-flange weld of corrugated web girders: 2. Analytical evaluation of fatigue strength of corrugated web-flange weld", Int. J. Fatigue, 27(4), 383-393. https://doi.org/10.1016/j.ijfatigue.2004.08.007.   DOI
4 Bariant, J.F., Utsunomiya, T. and Watanabe, E. (2006), "Elastoplastic analysis of PC girder with corrugated steel web by an efficient beam theory", Struct. Eng. Earthq. Eng., 23(2), 257s-268s. https://doi.org/10.2208/jsceseee.23.257s.   DOI
5 Bazant, Z.P. (1972), "Prediction of concrete creep effects using age-adjusted modulus method", J. Amer. Concrete Institute, 69, 212-217. https://doi.org/10.14359/11265.   DOI
6 Briassoulis, D. (1986), "Equivalent orthotropic properties of corrugated sheets", Comput. Struct., 23(2). 129-138. https://doi.org/10.1016/0045-7949(86)90207-5.   DOI
7 Rezaiee-Pajand, M., Shahabian, F. and Tavakoli, F.H. (2012), "A new higher-order triangular plate bending element for the analysis of laminated composite and sandwich plates", Struct. Eng. Mech., 43(2), 253-271. https://doi.org/10.12989/sem.2012.43.2.253.   DOI
8 Machimdamrong, C., Watanabe, E. and Utsunomiya, T. (2004), "Analysis of corrugated steel web girders by an efficient beam bending theory", Struct. Eng./Earthq. Eng., 21(2), 131s-142s. https://doi.org/10.2208/jsceseee.21.131s.   DOI
9 Mo, Y.L., Jeng, C.H. and Krawinkler, H. (2003), "Experimental and analytical studies of innovative prestressed concrete boxgirder bridges", Mater. Struct., 36(2), 99-107. https://doi.org/10.1007/BF02479523.   DOI
10 Moon, J., Ko, H.J., Sung, I. and Lee, H.E. (2015), "Natural frequency of a composite girder with corrugated steel web", Steel Compos. Struct., 18(1), 255-271. http://doi.org/10.12989/scs.2015.18.1.255.   DOI
11 Romeijn, A., Sarkhosh, R. and de Hoop, H. (2009), "Basic parametric study on corrugated web girders with cut outs", J. Construct. Steel Res., 65(2), 395-407. https://doi.org/10.1016/j.jcsr.2008.02.006.   DOI
12 Rosignoli, M. (1999), "Prestressed concrete box girder bridges with folded steel plate webs", Struct. Build., 134(1), 77-85. https://doi.org/10.1680/istbu.1999.31255.   DOI
13 Sayed-Ahmed, E.Y. (2007), "Design aspects of steel I-girder with corrugated steel webs", Electron. J. Struct. Eng., 7, 27-40.   DOI
14 Zhou, M., Liu, Z., Zhang, J., An, L. and He, Z. (2016), "Equivalent computational models and deflection calculation methods of box girders with corrugated steel webs", Eng. Struct., 127, 615-634. https://doi.org/10.1016/j.engstruct.2016.08.047   DOI
15 Rusch, H. (1960), "Researches toward a general flexural theory for structural concrete", J. Amer. Constitute, 57(1), 1-28.
16 Samanta, A. and Mukhopadhyay, M. (1999), "Finite element static and dynamic analysis of folded plates", Eng. Struct., 21(3), 277-287. https://doi.org/10.1016/S0141-0296(97)90172-3.   DOI
17 Sause, R., Abbas, H.H., Driver, R.G., Anami, K. and Fisher, J.W. (2006), "Fatigue life of girders with trapezoidal corrugated webs", J. Struct. Eng., 132(7), 1070-1078. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:7(1070).   DOI
18 Sause, R. and Braxtan, T.N. (2011), "Shear strength of trapezoidal corrugated steel webs", J. Construct. Steel Res., 67(2), 223-236. https://doi.org/10.1016/j.jcsr.2010.08.004.   DOI
19 Shiratani, H., Sakashita, K., Obi, H. and Fujikura, S. (2002), "Behavior of corrugated steel web girder around middle support", Proc., 1st fib Congress, Section 5: Composite Structures.
20 Tasevski, D., Fernandez Ruiz, M. and Muttoni, A. (2018), "Compressive strength and deformation capacity of concrete under sustained loading and low stress rates", J. Adv. Concrete Technol., 16(8), 396-415. https://doi.org/10.3151/jact.16.396.   DOI
21 Yi, J., Gil, H., Youm, K. and Lee, H. (2008), "Interactive shear buckling behavior of trapezoidally corrugated steel webs", Eng. Struct., 30(6), 1659-1666. https://doi.org/10.1016/j.engstruct.2007.11.009.   DOI
22 He, J., Liu, Y., Chen, A. and Yoda, T. (2012), "Mechanical behavior and analysis of composite bridges with corrugated steel webs: State-of-the-art", Int. J. Steel Struct., 12(3), 321-338. https://doi.org/10.1007/s13296-012-3003-9.   DOI
23 Fernandez Ruiz, M., Muttoni, A. and G. Gambarova, P. (2007), "Relationship between nonlinear creep and cracking of concrete under uniaxial compression", J. Adv. Concrete Technol., 5(3), 383-393. https://doi.org/10.3151/jact.5.383.   DOI
24 Frostig, Y. (2009), "Elastica of sandwich panels with a transversely flexible core-A high-order theory approach", Int. J. Solids Struct., 46(10), 2043-2059. https://doi.org/10.1016/j.ijsolstr.2008.05.007.   DOI
25 He, J., Liu, Y., Chen, A., Wang, D. and Yoda, T. (2014), "Bending behavior of concrete-encased composite I-girder with corrugated steel web", Thin-Wall. Struct., 74, 70-84. https://doi.org/10.1016/j.tws.2013.08.003.   DOI
26 He, J., Liu, Y., Chen, A. and Yoda, T. (2012), "Shear behavior of partially encased composite I-girder with corrugated steel web: Experimental study", J. Construct. Steel Res., 77, 193-209. https://doi.org/10.1016/j.jcsr.2012.05.005   DOI
27 Huang, L., Hikosaka, H. and Komine, K. (2004), "Simulation of accordion effect in corrugated steel web with concrete flanges", Comput. Struct., 82(23), 2061-2069. https://doi.org/10.1016/j.compstruc.2003.07.010.   DOI
28 Zhan, Y., Liu, F., Ma Zhongguo, J., Zhang, Z., Duan, Z. and Song, R. (2019), "Comparison of long-term behavior between prestressed concrete and corrugated steel web bridges", Steel Compos. Struct., 30(6), 535-550. https://doi.org/10.12989/SCS.2019.30.6.535.   DOI
29 He, J., Liu, Y., Wang, S., Xin, H., Chen, H. and Ma, C. (2019), "Experimental study on structural performance of prefabricated composite box girder with corrugated webs and steel tube slab", J. Bridge Eng., 24(6): 04019047. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001405   DOI
30 He, J., Wang, S., Liu, Y., Lyu, Z. and Li, C. (2017), "Mechanical behavior of a partially encased composite girder with corrugated steel web: Interaction of shear and bending", Eng., 3(6), 806-816. https://doi.org/10.1016/j.eng.2017.11.005.   DOI
31 Ibrahim, S.A., El-Dakhakhni, W.W. and Elgaaly, M. (2006), "Fatigue of corrugated-web plate girders: Experimental study", J. Struct. Eng., 132(9), 1371-1380. doi:10.1061/(ASCE)0733-9445(2006)132:9(1371).   DOI
32 Ikeda, H., Ashiduka, K., Ichinomiya, T., Okimi, Y., Yamamoto, T. and Kano, M. (2002), "A study on design method of shear buckling and bending moment", Proc., 1st fib Congress.
33 Jiang, R.J., Au, F.T.K. and Xiao, Y.F. (2015), "Prestressed concrete girder bridges with corrugated steel webs: Review", J. Struct. Eng., 141(2), 04014108. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001040.   DOI
34 Johnson, R.P., Cafolla, J. and Bernard, C. (1997), "Corrugated webs in plate girders for bridges", Struct. Build., 122(2), 157- 164. https://doi.org/10.1680/istbu.1997.29305   DOI
35 Kato, H. and Nishimura, N. (2004), "Practical analysis methods for continuous girder and cable stayed bridges composed of beams with corrugated steel webs", Struct. Eng. Earthq. Eng., 21(2), 207s-222s. https://doi.org/10.2208/jsceseee.21.207s.   DOI
36 Chen, X.C., Bai, Z.Z., Au, F.T.K. and Zeng, Y. (2015), "An extended sandwich theory for prestressed concrete bridges with corrugated steel web(s)", International Association for Bridge and Structural Engineering Conf. Elegance in Structures, 104, 270-271.
37 Carlsson, L.A. and Kardomateas, G.A. (2011), Structural and Failure Mechanics of Sandwich Composites, Springer, Georgia,USA.
38 CEB-FIP (2013), Fib Model Code for Concrete Structures 2010, federation internationale du beton, Lausanne, Switzerland.
39 Machimdamrong, C., Watanabe, E. and Utsunomiya, T. (2003), "An extended elastic shear deformable beam theory and its application to corrugated steel web girder", J. Struct. Eng., 49A, 29-38.
40 Chan, C.L., Khalid, Y.A., Sahari, B.B. and Hamouda, A.M.S. (2002), "Finite element analysis of corrugated web beams under bending", J. Construct. Steel Research, 58(11), 1391-1406. https://doi.org/10.1016/S0143-974X(01)00075-X.   DOI
41 Chen, X.C., Pandey, M., Bai, Z.Z. and Au, F.T.K. (2017), "Longtrm behavior of prestressed concrete bridges with corrugated steel webs", J. Bridge Eng., 22(8), 04017040. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001074.   DOI
42 Dassault Systemes (2017), ABAQUS/CAE, , Simulia Corp.
43 Driver, R.G., Abbas, H.H. and Sause, R. (2006), "Shear Behavior of Corrugated Web Bridge Girders", J. Struct. Eng., 132(2), 195-203. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:2(195).   DOI
44 Ebrahimi Motlagh, H.R. and Rahai, A. (2022), "Long-term behavior of a prestressed concrete bridge with corrugated steel webs", J. Bridge Eng., 27(1), 05021016. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001801.   DOI
45 Khalid, Y.A., Chan, C.L., Sahari, B.B. and Hamouda, A.M.S. (2004), "Bending behaviour of corrugated web beams", J. Mater. Proc. Technol., 150(3), 242-254. https://doi.org/10.1016/j.jmatprotec.2004.02.042.   DOI
46 Kovesdi, B. and Dunai, L. (2014), "Fatigue life of girders with trapezoidally corrugated webs: An experimental study", Int. J. Fatigue, 64, 22-32. https://doi.org/10.1016/j.ijfatigue.2014.02.017.   DOI
47 Kheirikhah, M.M., Khalili, S.M.R. and Fard, K.M. (2012), "Analytical solution for bending analysis of soft-core composite sandwich plates using improved high-order theory", Struct. Eng. Mech., 44(1), 15-34. https://doi.org/10.12989/sem.2012.44.1.015.   DOI
48 Kim, K.S., and Lee, D.H. (2011), "Flexural behavior of prestressed composite beams with corrugated web: Part II. Experiment and verification", Compos. Part B: Eng., 42(6), 1617-1629. https://doi.org/10.1016/j.compositesb.2011.04.019.   DOI
49 Kim, K.S., Lee, D.H., Choi, S.M., Choi, Y.H. and Jung, S.H. (2011), "Flexural behavior of prestressed composite beams with corrugated web: Part I. Development and analysis", Compos. Part B: Eng., 42(6), 1603-1616. https://doi.org/10.1016/j.compositesb.2011.04.020.   DOI
50 Li, G. and Zhang, J. (2011), "Design innovation of large-span prestressed concrete box girder bridge with corrugated steel web", Adv. Mater. Res., 243-249, 1682-1688. https://doi.org/10.4028/www.scientific.net/AMR.243-249.1682.   DOI
51 Elgaaly, M., Seshadri, A. and Hamilton, R.W. (1997), "Bending strength of steel beams with corrugated webs", J. Struct. Eng., 123(6), 772-782. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:6(772).   DOI
52 Elamary, A., Ahmed, M.M. and Mohmoud, A.M. (2017), "Flexural behaviour and capacity of reinforced concrete-steel composite beams with corrugated web and top steel flange", Eng. Struct., 135, 136-148. https://doi.org/10.1016/j.engstruct.2017.01.002.   DOI
53 Elgaaly, M., Hamilton, R.W. and Seshadri, A. (1996), "Shear strength of beams with corrugated webs", J. Struct. Eng., 122(4), 390-398. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:4(390).   DOI