• 제목/요약/키워드: prestressed composite

검색결과 173건 처리시간 0.019초

Experimental study of moment redistribution and load carrying capacity of externally prestressed continuous composite beams

  • Chen, Shiming;Jia, Yuanlin;Wang, Xindi
    • Structural Engineering and Mechanics
    • /
    • 제31권5호
    • /
    • pp.605-619
    • /
    • 2009
  • A comparative experimental study of prestressed continuous steel-concrete composite beams was carried out. Two continuous composite beams were tested, one of which was plain continuous steel-concrete composite beam, while the other was a composite beam prestressed with external tendons. Cracking behavior and the load carrying capacity of the beams were investigated experimentally. Full plasticity was developed in the mid-span section each beam, the maximum moments attained at the internal support sections however were governed by local buckling which was related to the slenderness of composite section. It was found that in hogging moment regions, the ultimate resistance of an externally prestressed composite beam would be governed by either distortional lateral buckling or local buckling, or interactive mode of these two buckling patterns. The results show that exerting prestressing on a continuous composite beam with external tendons will increase the extent of internal force and moment redistribution in the beam. The influences of local and distortional buckling on the behaviors of the composite continuous beams are discussed. The Moment redistribution and the load carrying capacity of the prestressed continuous composite beams are evaluated, and it is found that at the ultimate state, the moment redistribution in the prestrssed continuous composite beams is greater than that in non-prestressed composite beams.

Behavior of optimized prestressed concrete composite box-girders with corrugated steel webs

  • Lu, Yanqiu;Ji, Lun
    • Steel and Composite Structures
    • /
    • 제26권2호
    • /
    • pp.183-196
    • /
    • 2018
  • The traditional prestressed concrete composite box-girders with corrugated steel webs have several drawbacks such as large deflection and potential local buckling. In this study, two methods were investigated to optimize and improve the prestressed concrete composite box-girders with corrugated steel webs. The first method was to replace the concrete bottom slab with a steel plate and the second method was to support the concrete bottom slab on the steel flanges. The behavior of the prestressed concrete composite box-girders with corrugated steel webs with either method was studied by experiments on three specimens. The test results showed that behavior of the optimized and upgraded prestressed concrete composite box-girders with corrugated steel webs, including ultimate bearing capacity, flexural stiffness, and crack resistance, is greatly improved. In addition, the influence of different shear connectors, including perfobond leisten (PBL) and stud shear connectors, on the behavior of prestressed concrete composite box-girders with corrugated steel webs was studied. The results showed that PBL shear connectors can greatly improve the ultimate bearing capacity, flexural stiffness and crack resistance property of the prestressed concrete composite box-girders with corrugated steel webs. However, for the efficiency of prestressing introduced into the girder, the PBL shear connectors do not perform as well as the stud shear connectors.

Modeling fire performance of externally prestressed steel-concrete composite beams

  • Zhou, Huanting;Li, Shaoyuan;Zhang, Chao;Naser, M.Z.
    • Steel and Composite Structures
    • /
    • 제41권5호
    • /
    • pp.625-636
    • /
    • 2021
  • This paper examines the fire performance of uninsulated and uncoated restrained steel-concrete composite beams supplemented with externally prestressed strands through advanced numerical simulation. In this work, a sequentially coupled thermo-mechanical analysis is carried out using ABAQUS. This analysis utilizes a highly nonlinear three-dimensional finite element (FE) model that is specifically developed and validated using full-sized specimens tested in a companion fire testing program. The developed FE model accounts for nonlinearities arising from geometric features and material properties, as well as complexities resulting from prestressing systems, fire conditions, and mechanical loadings. Four factors are of interest to this work including effect of restraints (axial vs. rotational), degree of stiffness of restraints, the configuration of external prestressed tendons, and magnitude of applied loading. The outcome of this analysis demonstrates how the prestressing force in the external tendons is primarily governed by the magnitude of applied loading and experienced temperature level. Interestingly, these results also show that the stiffness of axial restraints has a minor influence on the failure of restrained and prestressed steel-concrete composite beams. When the axial restraint ratio does not exceed 0.5, the critical deflection of the composite beam is lower than that of the composite beam with a restraint ratio of 1.0.

재령보정 유효계수방법에 의한 프리스트레스트 합성거더의 장기거동 실험 검증 (Experimental Verification of Age-adjusted Effective Modulus Method to Long-Term Behavior Estimation of Prestressed Composite Girders)

  • 배두병;오창국;최석환
    • 한국강구조학회 논문집
    • /
    • 제24권5호
    • /
    • pp.571-582
    • /
    • 2012
  • 프리스트레스트 합성거더란 합성거더의 하부 콘크리트에 프리스트레싱 강선을 통해 압축력을 도입한 거더형식으로, 본 연구에서는 거푸집을 강재에 매달아 콘크리트의 자중이 강재에 부담된 상태로 합성시켜 단면의 효율을 극대화한 거더를 사용하였다. 이러한 프리스트레스트 합성거더에 대하여 재령보정 유효계수방법을 사용하여 시공단계별로 발생하는 여러 지속하중에 의한 장기거동 효과로 인해 유발되는 프리스트레스의 손실을 산정하고, 실제교량을 대상으로 시공단계별로 계측한 결과에 대해 야쓰미해법을 이용한 결과와 비교하였고, 또한 온도, 습도, 프리스트레스 긴장시기, 바닥판 타설시기를 변수로 한 변수해석을 수행하여 유효성을 검증하였다.

Compressive behavior of rectangular sandwich composite wall with different truss spacings

  • Qin, Ying;Chen, Xin;Xi, Wang;Zhu, Xing-Yu;Chen, Yuan-Ze
    • Steel and Composite Structures
    • /
    • 제34권6호
    • /
    • pp.783-794
    • /
    • 2020
  • Steel-concrete-steel sandwich composite wall is composed of two external steel plates and infilled concrete core. Internal mechanical connectors are used to enhance the composite action between the two materials. In this paper, the compressive behavior of a novel sandwich composite wall was studied. The steel trusses were applied to connect the steel plates to the concrete core. Three short specimens with different truss spacings were tested under compressive loading. The boundary columns were not included. It was found that the failure of walls started from the buckling of steel plates and followed by the crushing of concrete. Global instability was not observed. It was also observed that the truss spacing has great influence on ultimate strength, buckling stress, ductility, strength index, lateral deflection, and strain distribution. Three modern codes were introduced to calculate the capacity of walls. The comparisons between test results and code predictions show that AISC 360 provides significant underestimations while Eurocode 4 and CECS 159 offer overestimated predictions.

Structural behavior of the stiffened double-skin profiled composite walls under compression

  • Qin, Ying;Li, Yong-Wei;Lan, Xu-Zhao;Su, Yu-Sen;Wang, Xiang-Yu;Wu, Yuan-De
    • Steel and Composite Structures
    • /
    • 제31권1호
    • /
    • pp.1-12
    • /
    • 2019
  • Steel-concrete composite walls have been proposed and developed for applications in various types of structures. The double-skin profiled composite walls, as a natural development of composite flooring, provide structural and architectural merits. However, adequate intermediate fasteners between profiled steel plates and concrete core are required to fully mobilize the composite action and to improve the structural behavior of the wall. In this research, two new types of fasteners (i.e., threaded rods and vertical plates) were proposed and three specimens with different fastener types or fastener arrangements were tested under axial compression. The experimental results were evaluated in terms of failure modes, axial load versus axial displacement response, strength index, ductility index, and load-strain relationship. It was found that specimen with symmetrically arranged thread rods sustained more stable axial strain than that with staggered arranged threaded rods. Meanwhile, vertical plates are more suitable for practical use since they provide stronger confinement to profiled steel plate and effectively prevent the steel plate from early local buckling, which eventually enhance the composite action and increase the axial compressive capacity of the wall. The calculation methods were then proposed and good agreement was observed between the test results and the predicted results.

프리스트레스트 콘크리트 합성거더 교량의 피로해석 (Fatigue Analysis of Prestressed Concrete Composite Girder Bridges)

  • 김지상;오병환
    • 콘크리트학회지
    • /
    • 제5권4호
    • /
    • pp.135-144
    • /
    • 1993
  • 본 논문은 일정진폭의 피로하중을 받는 피리스트레스트 콘크리트 합성거더 교량의 피로해석 절차를 시간의 진행에 따른 재료 특성의 변화양상을 고려하여 정립하였다. 본 논문에서 제시된 방법은 피로하중의 재하에 따라 균열이 진전되면서 생기는 중립축의 이동현상을 고려하였으며, 해석결과는 기존의 제한된 실험자료와 부합되었다. 또한, 건설부에서 규정한 표준 I 단면의 프리스트레스트 콘크리트거더의 피로저항능력을 검토한 결과 충분한 안전도를 갖고 있음을 확인하였다. 그리고 이 방법의 적용으로 임의의 단면형상을 갖는 프리스트레스트 콘크리트 거더의 피로특성을 S-N 곡선의 형태로 나타낼 수 있도록 하였으며, 이는 향후 변동진폭하중하에서의 피로거동 해석에 유용하게 이용될 수 있을 것으로 사료된다.

Evaluation on structural behaviors of prestressed composite beams using external prestressing member

  • Ahn, Jin-Hee;Jung, Chi-Young;Kim, Sang-Hyo
    • Structural Engineering and Mechanics
    • /
    • 제34권2호
    • /
    • pp.247-275
    • /
    • 2010
  • In this study, experimental, numerical, and analytical approaches were carried out to evaluate the behavior and prestressing effect of prestressed composite beam by external tendon and cover plate. Behavior of prestressed composite beam, load-carrying capacity, effects of prestressing, and ultimate strength were estimated. The contribution of the section increase of the prestressing method using tendon was less than the prestressing method using cover plate. In accordance with numerical and analytical approaches, the ultimate strength of the prestressed composite beam is shown to be the same value because strength is determined according to the plastic resistance moment and the plastic neutral axis; however, both plastic resistance moment and neutral axis are not affected by prestressing force but affected by sectional stiffness of the prestressing member. Based on these approaches, we concluded that the prestressing method using tendon can be useful in applications without an increase in self-weight, and the prestressing method using high-strength cover plate can be applied to reduce the deflection of the composite beam. The prestressing method using high-strength cover plate can also be used to induce prestress of the composite beam in the case of a large deflection due to a smaller sectional stiffness of the composite beam.

복합 신소재 프리스트레이트 콘크리트보의 비선형 휨 모델링 (Nonlinear Flexural Modelling of Composite Prestressed Concrete Beams Reinforced with Advanced Composite Materials)

  • 이차돈;;김민경
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회 논문집(I)
    • /
    • pp.403-408
    • /
    • 1998
  • The analytical model is developed in order to predict the nonlinear flexural responses of bonded and unbonded prestressed concrete beam which contains advanced composite materials. The block concept is used, which be regarded as an intermediate modeling method between the couple method with one block and the layered method with multiple sliced blocks in a section. The model can successfully predict the flexural behavior of variously reinforced prestressed concrete beams.

  • PDF

프리스트레스트 콘크리트 교량거더의 등가피로하중모델 (An Equivalent Fatigue Load Model for Prestressed Concrete Bridges Girders)

  • 김지상
    • 콘크리트학회지
    • /
    • 제6권2호
    • /
    • pp.148-158
    • /
    • 1994
  • 본 논문은 실제 교량위를 통과하는 차량에 의하여 프리스트레스트 콘크리트 합성거다 교량에 발생하는 프로하중을 합리적으로 표현할 수 있는 등가프로하중모델을 도출하는데 그 목적을 두고 있다. 교량에 작용하는 피로하중은 그 크기와 지속시간이 불규칙피로하중과 같은 피로손상을 줄 수 있는 등가의 피로하중 모델을 제안하여 피로해석 및 설계를 간편하고 합리적으로 수행할 수 있도록 하였다. 또, 이 모델의 적용성을 검토하기 위하여 국내의 교통량조사 자료를 이용하여 교량을 통과하는 차량의 확률모델을 도출하고, 이 모델로부터 작용 모멘트의 확률특성을 결정하여 피로해석을 수행하였다.