• Title/Summary/Keyword: prestress effect

Search Result 93, Processing Time 0.03 seconds

Flexural tests on two-span unbonded post-tensioned lightweight concrete beams

  • Yang, Keun-Hyeok;Lee, Kyung-Ho;Yoon, Hyun-Sub
    • Structural Engineering and Mechanics
    • /
    • v.72 no.5
    • /
    • pp.631-642
    • /
    • 2019
  • The objective of the present study is to examine the flexural behavior of two-span post-tensioned lightweight aggregate concrete (LWAC) beams using unbonded tendons and the reliability of the design provisions of ACI 318-14 for such beams. The parameters investigated were the effective prestress and loading type, including the symmetrical top one-point, two third-point, and analogous uniform loading systems. The unbonded prestressing three-wire strands were arranged with a harped profile of variable eccentricity. The total length of the beam, measured between both strand anchorages, was 11000 mm. The test results were compared with those compiled from simply supported LWAC one-way members, wherever possible. The ultimate load capacity of the present beam specimens was evaluated by the collapse mechanism of the plasticity theorem and the nominal section moment strength calculated following the provision of the ACI 318-14. The test results showed that the two-span post-tensioned LWAC beams had lower stress increase (Δfps) in the unbonded tendons than the simply supported LWAC beams with a similar reinforcement index. The effect of the loading type on Δfps and displacement ductility was less significant for two-span beams than for the comparable simply supported beams. The design equations for Δfps and Δfps proposed by ACI 318-14 and Harajli are conservative for the present two-span post-tensioned LWAC beams, although the safety decreases for the two-span beam, compared to the ratios between experiments and predictions obtained from simply supported beams.

An Experimental Study on Flexural Behavior of RC Beams Strengthened with Hi-Strength Bars(3) (고장력 인장봉으로 보강된 RC 보의 휨 거동에 관한 실험적 연구(3))

  • Shin, Kyung-Jae;Kim, Yoon-Jung;Moon, Jeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.351-358
    • /
    • 2007
  • Unlike external bonded steel plate or carbon fiber, the external unbonded strengthening using hi-strength bar has some advantages in speed and simplicity of installation. It is not required surface preparations and not affected by environmental conditions. A set of nine laboratory tests on RC beams strengthened using the hi-tension bars are reported. Anchoring pin developed in former research is installed at the end of beam to connect the hish-tension bar to RC beam. The test results strengthened by hi-tension bars are compared with those of non-strengthened specimens. The main test parameters are the cross-sectional area of the high-tension bar, distance of stirrups and condition of supports. Test results show that the beams reinforced are superior to reference specimens, especially for the strength and deformation capacity. Also, shear resisting effect of hi-strength bar can be confirmed in the specimens which have lack of stirrups.

Multi-Stepwise Prestressing Method of Steel Structure Using Thermal-Expanded Cover-plate (커버플레이트의 온도변형을 이용한 강구조물의 다단계 프리스트레싱)

  • Kim, Sang Hyo;An, Jin Hee;Kim, Jun Hwan;Kim, Hyung Ju
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.783-792
    • /
    • 2006
  • This study investigates developments in a prestressing method using the thermal-expanded cover-plates that increases the load-carrying capacity of structures by installing it on upper or lower flanges in case that huge flexural stiffness according to the increase in span length or load are required of steel structure, such as rolled H-beam or built-up beam. This method applies multi-stepwise contraction forces generated by the contraction of cover plates as prestressing forces after joining the cover plate applied by multi-stepwise thermal expansion that was applied to induce prestressing to structures. To perform a theoretical investigation of the prestressing force applied to a structure due to the thermal expansion and induce a multi-stepwise prestressing method using multi-stepwise thermal distribution, this study proposes a theoretical heat transfer solution for the multi-stepwise thermal distribution of cover plates and analyzes the effect of a multi-stepwise prestressing method using the multi-stepwise thermal expansion.

Anchorage efficiency of mold-type anchorage for CFRP plates (CFRP판 긴장재를 위한 부착형 정착장치의 정착성능)

  • Park, Jong-Sup;Park, Young-Hwan;Jung, Woo-Tai
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.169-172
    • /
    • 2008
  • Carbon fiber reinforced polymer (CFRP) laminates can be used more efficiently in strengthening applications by applying prestress to the CFRP laminates. A key problem for prestressing with CFRP laminates is anchoring the laminates. These may include fracture to the CFRP laminates due to excessive gripping force or slippage of the CFRP laminates out of the anchorage zone caused by low friction between the anchor device and the lamiantes. The main objective of this study is the development of an applicative mold-type anchorage system for prestressed CFRP laminates through experimental study. The experimental parameters were the type of anchorage detail and the effect of surface treatment. The test results showed that the developed anchor assures 100% CFRP laminate strength.

  • PDF

Flexural Behavior of Steel-Concrete Composite Beams Strengthened by Post Tension Method (포스트 텐션 공법으로 보강된 SC 합성보의 휨 거동)

  • Ryu, Soo-Hyun;Kim, Heui-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.186-195
    • /
    • 2010
  • This study has attempted to suggest a proper reinforcement method by strengthening unbonded post -tensioning through height of an anchorage hole, form of a saddle, and loading time point as parameters and evaluating the reinforcement method through a bending experiment. The result of this experiment indicated effects of reinforcement since the maximum strength ratio(the ratio of an experimental value to theoretical value) of SC composite beams before prestressed was 0.97 and after prestress were 1.00~1.21. As a result of analysis on displacement and strain, irrespective of height of an anchorage hole and loading time point, the D120-series specimen where an anchorage hole was installed on the neutral axis after reinforcement showed that its deflection continuously increased without sudden load reduction after maximum load and it stably behaved with relatively low strain of each part. In terms of reinforcement effects, the maximum strength of SCR-UD120 specimen prestressed after pre-loading was increased 1.72 times comparing to SC composite beams so SCR-UD120 specimen prestressed after pre-loading was shown to be the best.

Evaluation of Reinforcement Effects According to Reinforcement Type and Grouting Method (지반보강재의 형상과 그라우팅 방법에 따른 보강효과 평가)

  • Park, Jongseo;Kim, Taeyeon;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.8
    • /
    • pp.13-20
    • /
    • 2019
  • In order to ground reinforcement, the chemical grouting, the anchor, the soil nailing system, the micropile, etc. can be mentioned by the methods widely used in domestic. The above ground reinforcement methods are developed by various methods depending on the type of reinforcement, installation method, presence of prestress, grouting method, etc. However, in common, the strength of reinforcement, the friction force of grout and reinforcement and the friction force of grout and ground are the main design variables. Therefore, the optimized ground reinforcement is a material with a high tensile strength of the reinforcement itself, the friction force between the reinforcement and the grout is high, and the application of an optimal grouting method is necessary to improve the friction force between the grout and the ground. In this study, a total of 20 model tests were conducted to analyze the reinforcement effects according to the shape of the reinforcement and the grouting method. As a result of the test, As a result of the experiment, it is judged that the reinforcing effect is superior to the perforated + wing type reinforcement and post grouting method.

Permeability of Magnetic Flux of PS Steel for Variation of Stress and Temperature (긴장재의 응력 및 온도변화에 따른 자속투과율)

  • Park, Jin Su;Kim, Byeong Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.323-331
    • /
    • 2022
  • An experimental study was conducted to investigate the effect of applied tensile force and temperature on the permeability of magnetic flux in prestressing steel. The permeability of magnetic flux is the ratio at which the magnetic flux between two points passes. The prestressing steel used in these experiments included a 7-mm PS wire mainly used for cable-stayed bridges and a 12.7-mm PS strand for prestressed concrete bridges. The experiments to extract the permeability of the magnetic flux of steel wire and strand were conducted under various tensile levels and temperature conditions. From the experimental results, it was observed that the permeability of magnetic flux of the PS tension material was linearly proportional to the applied tensile stress level, and inversely proportional to the temperature. If the experimental relationship among the magnetic permeability, temperature, and prestressing ratio of a PS tension material is known in advance, the current tension stress level on PS members can be evaluated by measuring solely the magnetic permeability and temperature.

Flexural Behavior of Concrete Beams Reinforced with Fe based Shape Memory Alloy Bar (철계-형상기억합금 바로 제작된 콘크리트 보의 휨 거동)

  • Hong, Ki-Nam;Yeon, Yeong-Mo;Ji, Sang-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.67-76
    • /
    • 2020
  • This paper reports an experimental study to evaluate the flexural behavior of concrete beams reinforced using Fe based shape memory alloy (Fe-SMA) bars. For the experiment, a concrete beam of 200mm×300mm×2,200mm was produced, and a 4% pre-strained Fe-SMA bar was used as a tensile reinforcement. As experimental variables, type of tensile reinforcement (SD400, Fe-SMA), reinforcement ratio (0.2, 0.39, 0.59, 0.78), activation of Fe-SMA (activation, non-activation), and joint method of Fe-SMA bar (Continuous, welding, coupler) were considered. The electric resistance heating method was used to activate the Fe-SMA bar, and a current of 5A/㎟ was supplied until the specimen reached 160℃. After the upward displacement of the specimen due to the camber effect was stabilized, a three-point flexural loading experiment was performed using an actuator of 2,000 kN capacity. As a result of the experiment, it was found that the upward displacement occurred due to the camber effect as the Fe-SMA bar was activated. The specimen that activated the Fe-SMA bar had an initial crack at a higher load than the specimen that did not activate it. However, as with general prestressed concrete, the effect of the prestress by Fe-SMA activation on the ultimate state of the beam was insignificant.

Study on Material Segregation of Grout and Filling Characteristic of Grouting for Post-Tensioned Concrete Beam (PC 그라우트의 재료분리 및 PC 빔 그라우팅 충전성에 관한 연구)

  • Lee, Jun-Ki;Choi, Joon-Ho;Yoon, Jeong-Seob;Cho, In-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.419-426
    • /
    • 2010
  • This paper discusses a series of experiments including material improvement in order to ensure quality of grouting for the post-tensioned structure. In presstressed concrete, grouting refers to the construction procedure of filling empty space of duct enclosing the prestress tendons using cementitious material, To date, adequate quality control of the grouting has not been established in Korea because the relationship between the grouting and durability of post-tensioned structure is not well-recognized. The Korean standard does not consider the important material characteristic, wick effect, which is caused by tendons in the ducts, and furthermore current standard testing method does not quantify reasonable material segregation. As a result, the grout material, which satisfies the current material standards, may well exhibit excessive bleeding of water or shrinkage during construction. In this study, international codes and standards related to grouting were surveyed. The mix proportions of the constituents and novel admixtures were suggested to meet equivalently with these standards. Performance of this enhanced grout was compared with common domestic grouts using the international standard testing method. A series of mock-up specimens considering geometry of PC beam was constructed and grout flow pattern was observed as the grout was injected. It was observed that the grouting performance was highly influenced by material properties and filling characteristic can be varied depending on geometry of ducts.

Shear Strength of Prestressed PC-CIP Composite Beams with Vertical Shear Reinforcement (전단 철근 보강된 프리스트레스 PC와 CIP 합성보의 전단강도)

  • Suh, Jung-Il;Park, Hong-Gun;Hong, Geon-Ho;Kang, Su-Min;Kim, Chul-Goo
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.399-409
    • /
    • 2015
  • Recently, the use of composite construction method using precast (PC) and cast-in-place (CIP) concrete is increased in modular construction. For PC members, pre-tensioning is used to improve efficiency of the structural performance. However, current design codes do not clearly define shear strength of prestressed PC-CIP composite members. In this study, 22 specimens were tested to evaluate shear strength of prestressed composite members with vertical shear reinforcement. The test variables were the area ratio of high-strength (60 MPa) to low-strength concrete (24 MPa), prestressing force of strands, shear span-to-depth ratio(a/d), and vertical shear reinforcement ratio. The test results showed the prestressing force did not completely restrain diagonal cracking of non-prestressed concrete in the web. Thus, the effect of prestress force was not insignificant in the effect for monolithic beams. The vertical shear strength and horizontal shear strength of the composite beams were compared with the strength predictions of KCI design method.