• Title/Summary/Keyword: prestack migration

Search Result 28, Processing Time 0.026 seconds

Prestack Depth Migration for Gas Hydrate Seismic Data of the East Sea (동해 가스 하이드레이트 탄성파자료의 중합전 심도 구조보정)

  • Jang, Seong-Hyung;Suh, Sang-Yong;Go, Gin-Seok
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.711-717
    • /
    • 2006
  • In order to study gas hydrate, potential future energy resources, Korea Institute of Geoscience and Mineral Resources has conducted seismic reflection survey in the East Sea since 1997. one of evidence for presence of gas hydrate in seismic reflection data is a bottom simulating reflector (BSR). The BSR occurs at the interface between overlaying higher velocity, hydrate-bearing sediment and underlying lower velocity, free gas-bearing sediment. That is often characterized by large reflection coefficient and reflection polarity reverse to that of seafloor reflection. In order to apply depth migration to seismic reflection data. we need high performance computers and a parallelizing technique because of huge data volume and computation. Phase shift plus interpolation (PSPI) is a useful method for migration due to less computing time and computational efficiency. PSPI is intrinsically parallelizing characteristic in the frequency domain. We conducted conventional data processing for the gas hydrate data of the Ease Sea and then applied prestack depth migration using message-passing-interface PSPI (MPI_PSPI) that was parallelized by MPI local-area-multi-computer (MPI_LAM). Velocity model was made using the stack velocities after we had picked horizons on the stack image with in-house processing tool, Geobit. We could find the BSRs on the migrated stack section were about at SP 3555-4162 and two way travel time around 2,950 ms in time domain. In depth domain such BSRs appear at 6-17 km distance and 2.1 km depth from the seafloor. Since energy concentrated subsurface was well imaged we have to choose acquisition parameters suited for transmitting seismic energy to target area.

Development of a Prestack Generalized-Screen Migration Module for Vertical Transversely Isotropic Media (횡적등방성 매질에 적용 가능한 겹쌓기 전 Generalized-Screen 참반사 보정 모듈 개발)

  • Shin, Sungil;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.2
    • /
    • pp.71-78
    • /
    • 2013
  • The one-way wave equation migration is much more computationally efficient comparing with reverse time migration and it can provide better image than the migration algorithm based on the ray theory. We have developed the prestack depth migration module adopting (GS) propagator designed for vertical transverse isotropic media. Since GS propagator considers the higher-order term by expanding the Taylor series of the vertical slowness in the thin slab of the phase-screen propagator, the GS migration can offer more correct image for the complex subsurface with large lateral velocity variation or steep dip. To verify the validity of the developed GS migration module, we analyzed the accuracy with the order of the GS propagator for VTI media (GSVTI propagator) and confirmed that the accuracy of the wavefield propagation with the wide angles increases as the order of the GS propagator increases. Using the synthetic seismic data, we compared the migration results obtained from the isotropic GS migration module with the anisotropic GS migration module. The results show that the anisotropic GS migration provides better images and the improvement is more evident on steeply dipping structures and in a strongly anisotropic medium.

3-D reverse-time migration using acoustic wave equation: An experience of SEG/EAGE salt data set

  • Yoon, Kwang-Jin;Shin, Chang-Soo;Hong, Soon-Duk;Yang, Seung-Jin;Suh, Sang-Yong
    • Proceedings of the KSEEG Conference
    • /
    • 2002.04a
    • /
    • pp.156-158
    • /
    • 2002
  • Reverse-time migration has no dip limitations and one of the most promising methods to preserve true amplitudes. We applied 3-D prestack reverse time migration based on a pseudo-spectral implementation of the acoustic wave equation to the SEG/EAGE salt dome synthetic data set. We were able to illuminate sub salt reflectors of the SEG/EAGE salt model that were barely observable in the Kirchhoff migration images. Using the pseudo-spectral modeling technique, we could implement reverse-time migration within the core memory, which could be equipped to a personal computer.

  • PDF

Imaging of Ground Penetrating Radar Data Using 3-D Kirchhoff Migration (3차원 Kirchhoff 구조보정을 이용한 지표레이다자료의 영상화)

  • Cho, Dong-Ki;Suh, Jung-Hee;Choi, Yoon-Kyoung
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.3
    • /
    • pp.185-192
    • /
    • 2002
  • We made a study of 3-D migration which could precisely image data of GPR (Ground Penetrating Radar) applied to NDT (Non-Destructive Test) field for the inspection of structural safety. In this study, we obtained 3-D migrated images of important targets in structuresurvey (e.g. steel pipes, cracks) by using 3-D Kirchhoff prestack depth migration scheme developed for seismic data processing. For a concrete model consisting of steel pipe and void, the targets have been well defined with opposite amplitude according to the parameters of the targets. And migrated images using Parallel-Broadside array (XX configuration) have shown higher resolution than those using Perpendicular-Broadside array (YY configuration) when steel pipes had different sizes. Therefore, it is required to analyze the migrated image of XX configuration as well as that of general YY configuration in order to get more accurate information. As the last stage, we chose a model including two steel pipes which cross each other. The upper pipe has been resolved clearly but the lower has been imaged bigger than the model size due to the high conductivity of the upper steel.

Refraction traveltime tomography using damped monochromatic wavefield

  • Pyun, Suk-Joon;Shin, Chang-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.441-448
    • /
    • 2003
  • Refraction tomography requires an algorithm for efficiently computing the traveltimes and their $Fr\'{e}chet$ derivatives. We have attempted to solve the damped wave field using the frequency domain finite element model ing and then invoked the reciprocity theorem to calculate the $Fr\'{e}chet$ derivative of the traveltime with respect to the subsurface parameter. Then, we used a damped least square method to invert the traveltimes of the Marmousi 2 model. Numerical tests demonstrate that the refraction tomography with large aperture data can be used to estimate the smooth velocity model for the prestack depth migration.

  • PDF

Kirchhoff Prestack Depth Migration for the Complex Structure Using One-Way Wave Equation (일방향 파동방정식을 이용한 복잡한 구조의 키리히호프 중합전 심도구조보정)

  • Ko, Seung-Won;Yang, Seung-Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.1
    • /
    • pp.18-22
    • /
    • 2002
  • As a single arrival traveltime, maximum energy arrival traveltime has been known as the most proper operator for Kirchhoff migration. In case of the model having the simple structure, both the first arrival traveltime and the maximum energy arrival traveltime can be used as the correct operators for Kirchhoff migration. However for some model having the complex and high velocity contrast structure, the migration using the first arrival traveltime can't give the correct depth section. That is, traveltime to be required in Kirchhoff migration is the maximum energy traveltime, but, needs considerably more calculation time than that of first arrival. In this paper, we propose the method for calculating the traveltime approximated to the maximum energy arrival using one-way wave equation. After defining the WAS(Wrap Around Suppression) factor to be used for calculating the first arrival traveltime using one-way wave equation as the function of lateral grid interval and depth and considering the delay time of source wavelet. we calculate the traveltime approximated to the maximum energy arrival. to verify the validity of this traveltime, we applied this to the migraion for simple structure and complex structure and compared the depth section with that obtained by using the first arrival traveltime.

Phase inversion of seismic data

  • Kim, Won-Sik;Shin, Chang-Soo;Park, Kun-Pil
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.459-463
    • /
    • 2003
  • Waveform inversion requires extracting a reliable low frequency content of seismic data for estimating of the low wave number velocity model. The low frequency content of the seismic data is usually discarded or neglected because of the band-limited response of the source and the receivers. In this study, however small the spectral of the low frequency seismic data is, we assume that it is possible to extract a reliable phase information of the low frequency from the seismic data and use it in waveform inversion. To this end, we exploit the frequency domain finite element modeling and source-receiver reciprocity to calculate the $Frech\`{e}t$ derivative of the phase of the seismic data with respect to the earth model parameter such as velocity, and then apply a damped least squares method to invert the phase of the seismic data. Through numerical example, we will attempt to demonstrate the feasibility of our method in estimating the correct velocity model for prestack depth migration.

  • PDF

Efficient calculation method of derivative of traveltime using SWEET algorithm for refraction tomography

  • Choi, Yun-Seok;Shin, Chang-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.402-409
    • /
    • 2003
  • Inversion of traveltime requires an efficient algorithm for computing the traveltime as well as its $Frech\hat{e}t$ derivative. We compute the traveltime of the head waves using the damped wave solution in the Laplace domain and then present a new algorithm for calculating the $Frech\hat{e}t$ derivative of the head wave traveltimes by exploiting the numerical structure of the finite element method, the modem sparse matrix technology, and SWEET algorithm developed recently. Then, we use a properly regularized steepest descent method to invert the traveltime of the Marmousi-2 model. Through our numerical tests, we will demonstrate that the refraction tomography with large aperture data can be used to construct the initial velocity model for the prestack depth migration.

  • PDF

The Construction and Application Plan of Seismic Data Processing System (탄성파 자료처리 시스템 구축 및 활용 방안)

  • Kwak, Joon-Young;Seul, Chang-Hyun;Ko, Seung-Won;Jeon, Jae-Ho;Seo, Young-Tak
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.05a
    • /
    • pp.67-71
    • /
    • 2009
  • The high resolution seismic data processing essentially requires the latest data processing technology with a system which enables to calculate the large volume of input/output and computing of data. Nowadays, there is a high foreign dependency on the data processing and QC. In this research, The test processing had been carried out to deduce the best suited software by evaluating functionality, usability and user environment. And several attempts are made to select the most appropriated specification of hardware in order to maximize the software efficiency. The results showed that more numbers of multiple and noise were eliminated in existing prestack time migration sections, which effectively enhanced the resolution.

  • PDF