• Title/Summary/Keyword: pressure tube

Search Result 2,124, Processing Time 0.027 seconds

A study on airside performance of finned-tube heat exchanger according to fin combination and fin pitch variation of using large scale model (확대모형을 이용한 휜-관 열교환기의 휜 형상 및 휘 간격 변화에 따른 공기측 성능에 관한 연구)

  • Byun, Ju-Suk;Jeon, Chang-Duk;Lee, Jin-Ho;Kim, Jin-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.281-287
    • /
    • 2005
  • This study investigates the pressure drop and heat transfer characteristics of heat exchanger according to the combination of fin configuration and fin pitch of each row by the similitude experiments with the finned-tube geometry scaled as large as four times Finned-tube heat exchanger has 2 rows, and fin geometry consists of two cases, louver-louver and louver-slit. Fin pitch is varied with three types in each case, 6-6 mm, 8-8 mm and 8-6 mm. Results show that total heat transfer can be occurred evenly at each row by varying the fin pitch of 1st row and 2nd row. Heat transfer rate and pressure drop characteristics change according to the combination for fin geometry and fin pitch.

  • PDF

Evaluation of Performance of a Residential Air-Conditioning System Using Microchannel and Fin-and-Tube Heat Exchanger (마이크로채널과 핀 튜브 열교환기를 적용한 가정용 에어컨디셔너의 성능 평가)

  • Yun, Rin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.1
    • /
    • pp.28-35
    • /
    • 2007
  • In this study the seasonal performance of a residential air conditioning system having either a fin-and-tube condenser or a microchannel condenser is experimentally investigated. A commercially available 7 kW capacity residential air conditioning system having a fin-and-tube condenser served as the base system. The test results show that the system with a microchannel heat exchanger has a reduced refrigerant charge amount of 10%, the coefficient of performance is increased by 6% to 10%, and the SEER is increased by 7% as compared with those of the base system. Moreover, the condensing pressure of the system is decreased by 100 kPa and the pressure drop across the condenser is decreased by 84%. The microchannel heat exchanger enhances the SEER of the residential air conditioning system by providing better heat transfers at reduced pressure drops.

Design of the Outlet-Port Tube of a Cyclone-Type Oil Separator for a Compressor (사이클론 방식 유분리기의 출구 튜브 설계)

  • Jang, Seongil;Ahn, Joon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.8
    • /
    • pp.402-408
    • /
    • 2015
  • A series of numerical simulations have been carried out to study the performances of cyclone-type oil separators, which are designed for refrigeration-system compressors. The corresponding working fluid is R22, which is a typical refrigerant, whereby a mineral-oil droplet is supplied (Ed-highlight-My interpretation). The outlet-tube length in relation to the total chamber volume is considered a design parameter. Depending on the tube length, the separation efficiency varies from 98.7% to 99.3%, while the predicted pressure drop is between 5.1 kPa and 6.4 kPa. Considering both the pressure drop and separation efficiency, the length of the outlet-port tube of the separator is 152 mm.

Effect of the Pressure Formation at the Tip of the Melt Delivery Tube in Close-coupled Nozzles in Gas Atomization Process

  • Unal, Rahmi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.477-478
    • /
    • 2006
  • Close-coupled atomizers are of great interest and controlling their performance parameters is critical for metal powder producing and spray forming industries. In this study, designed close-coupled nozzle systems were used to investigate the effect of the nozzle types and protrusion length of the melt delivery tube on the pressure formation at the melt delivery tube tip. The observed metal flow rate was not behaving as what was earlier assumed, namely that, deeper aspiration enhanced metal flow rate. Higher aspiration pressure at the tip of the melt delivery tube increases the stability of atomization process.

  • PDF

Effect of Process Parameters on Forming Characteristics of Flange Hydroforming Process (플랜지 형성 액압성형시 공정변수에 따른 성형 특성)

  • Lee, H.J.;Joo, B.D.;Choi, M.K.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.19 no.2
    • /
    • pp.113-119
    • /
    • 2010
  • Hydroforming is the technology that utilizes hydraulic pressure to form tube or sheet materials into desired shapes inside die cavities. Tube hydroforming provides a number of advantages over the conventional stamping process, including fewer secondary operations, weight reduction, assembly simplification, adaptability to forming of complex structural components and improved structural strength. In many case, hydroformed parts have to be structurally joined at some point. Therefore it is useful if the hydroformed automotive parts can be given a localized attachment flange. In this study for the numerical process design FE analysis was performed with DYNAFORM 5.5. Die parting angle and circumferential expansion ratio was optimized. With optimized condition, bulge and hydroforming experiments to form flange were performed. Forming characteristic at various pressure conditions was analyzed and optimized internal pressure condition was evaluated. The results show that flanged parts can be successfully produced by tube hydroforming process.

Study on the hydro-formability of double layered tube (이중튜브 강관의 액압 성형 특성 연구)

  • Kwon, S.O.;Yi, H.K.;Jang, J.H.;Jeon, D.H.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.306-309
    • /
    • 2007
  • In this study, hydroforming characteristic of the double-layered tube was investigated in the hydroforming process. The double-layered tube can be made outer surface on the stainless steel by only one processing. The free bulging test was performed to analysis optimized pressure and axial feeding amount of the double layered tubes. And the experimental results between stainless/carbon and carbon/carbon double-layered tube were compared with the forming data. Moreover analysis model that can be hydroformability and predictable forming pressure of double-layered tube was presented.

  • PDF

Evaluation of Thermal Fluid Characteristics for EGR Cooler with Spiral Type (Spiral 구조 EGR Cooler의 열유동 특성 평가)

  • 허형석;원종필;박경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.44-50
    • /
    • 2003
  • Cooled EGR is an effective method for the reduction of NOx from a diesel engine and an EGR Cooler is the key component of the system. High efficiency, low pressure loss and compactness are required for the EGR Cooler. To meet these requirements, new geometric tube must be developed. In this paper, a full size EGR cooler test bench has been developed to validate the CFD flow and heat transfer models. Fluid temperature and pressure drop measurements are provided. fillet temperature is $200^{\circ}C$ and $300^{\circ}C$, and flow rates vary from 0.008 kg/sec to 0.019 kg/sec. The gas flow and heat transfer in a single tube cooler have been studied using computational fluid dynamics(CFD). Analysis has been carried out in a single tube with a plain tube and six spirally enhanced tubes of varying pitch to depth ratio(p/e).

Analysis on Roll Over in the Tube Hydro-Piercing Process (튜브 하이드로 피어싱시 롤 오버의 실험적 분석)

  • Choi, Sung-Ki;Ahn, Ick-Tae;Moon, Young-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.992-998
    • /
    • 2004
  • During the tube hydropiercing, the region adjacent to the pierced hole will be deformed and will be drawn away from the die block as the punch advances through the wall of the tube. The deformation in the region may range from a substantially flat form to a countersunk form, so called rollover. In this study, the effects of material properties, shape of piercing punches, roundness of tube surface and internal pressure within the tube during piercing on the rollover have been investigated experimentally. The results provide the quantitative variation of rollover at given hydropiercing parameters, and a relationship between the deformed radius and the rollover caused by the deformation has been established.

Thermal Performance Analysis of a Shell-and-Tube Heat Exchanger with Plate Fins of Various Shape (다양한 형상의 판형 휜을 장착한 원통다관형 열교환기의 열성능 해석)

  • 신지영;손영석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.648-656
    • /
    • 2004
  • In this study, a highly efficient shell-and-tube heat exchanger with plate fins is considered to improve thermal performance of the conventional shell-and-tube heat exchanger. This type of shell-and-tube heat exchanger with plate fins of various shape is simulated three-dimensionally using a commercial thermal-fluid analysis code. CFX4.4. The effect of the shape of the plate fin on heat transfer characteristics is also investigated by the simulation. Plate fins of four different shapes. plane, plane-slit. wave. and wave-slit fins, are considered. The flow fields, pressure drop and heat transfer characteristics in the heat exchanger are calculated. It is proved that the shell-and-tube heat exchanger with plate fins is superior to the conventional shell-and-tube heat exchanger without plate fins in terms of heat transfer. The shape of the plate fin is important in the performance of a heat exchanger such as heat transfer and pressure drop.

Methodology of Non-Destructive Examinations on Hydraulic Expansion Region of Steam Generator Tubes (증기발생기 세관 수압확관부 비파괴검사 방법론)

  • Kim, Chang-Soo;Jung, Nam-Du;Lee, Sang-Hoon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.4 no.2
    • /
    • pp.29-33
    • /
    • 2008
  • As the measures of nuclear power plant utilities and manufacturers to reduce the defects of tube expansion region during manufacturing steam generators, many types of NDEs(Non-Destructive Examinations) are conducted to inspect the expansion region. The expansion region of tube is subject to degrade because of stress concentration induced by tube expansion, sludge pile and high temperature. So the inspections for tube expansion region have been reinforced. Liquid penetrant test, helium leak test, Bobbin profile test and hydraulic test are performed to confirm the integrity of tube expanded by hydraulic expansion method. Liquid penetrant test and helium leak test are used to inspect seal weld region on tubesheet end part. Bobbin Profile test is used to inspect fully the expanded region of steam generator tube. Hydraulic test finally verifies the integrity of seal weld region on tubesheet end part.

  • PDF