• Title/Summary/Keyword: pressure time

Search Result 7,965, Processing Time 0.034 seconds

Development of a Pressure Measurement System with the Parallel Structure (병렬구조의 압력측정 시스템 개발)

  • Yun, Eui-Jung;Kim, Jwa-Yeon;Lee, Kang-Won;Lee, Seok-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.4
    • /
    • pp.328-333
    • /
    • 2006
  • In this paper, we developed a pressure measurement apparatus with the parallel structure to improve the measurement efficiency of pressure sensors by reducing the measurement time of pressure. The developed system has two parallel positions for loading Silicon pressure sensor and has a dual valve structure. The semiconductor pressure sensors prepared by Copal Electronics were used to confirm the performance of the developed measurement system. Two stage differential amplifier circuit was employed to amplify the weak output signal and the amplified output signal was improved utilizing a low-pass filter. New apparatus shows the measurement time of pressure two times shorter than that of conventional one with the serial structure, while both structures show the similar linear output versus pressure characteristics.

Estimating blood pressure using the pulse transit time of the two measuring from pressure pulse and PPG

  • Kim, Gi-Ryon;Ye, Soo-Young;Kim, Jae-Hyung;Jeon, Gye-Rok
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.87-94
    • /
    • 2008
  • Blood pressure (BP), one of the most important vital signs, is used to identify an emergency state and reflects the blood flow characteristics of the cardiovascular system. The conventional noninvasive method of measuring BP is inconvenient because patients must wear a cuff on their arm and the measurement process takes time. This paper proposes an algorithm for estimating the BP using the pulse transit time (PTT) of the photoplethysmography (PPG) and pressure pulse from finger at the same time as a more convenient way to measure the BP. After recording the electrocardiogram (ECG), measuring the pressure pulse, and performing PPG, we calculated the PTT from the acquired signals. Then, we used a multiple regression analysis to measure the systolic and diastolic BP indirectly. Comparing the BP measured indirectly using the proposed algorithm and the real BP measured with a sphygmomanometer, the systolic pressure had a mean error of ${\pm}3.240$ mmHg and a standard deviation of 2.530 mmHg, while the diastolic pressure had a satisfactory result, i.e., a mean error of ${\pm}1.807$ mmHg and a standard deviation of 1.396 mmHg. These results are more superior than existing method estimating blood pressure using the one PTT and satisfy the ANSI/AAMI regulations for certifying a sphygmomanometer i.e., the measurement error should be within a mean error of ${\pm}5$ mmHg and a standard deviation of 8 mmHg. These results suggest the possibility of applying our method to a portable, long-term BP monitoring system.

Opening Characteristics of a Main Oxidizer Shut-off Valve at Different Valve Inlet Pressures (밸브 입구 압력 변화에 따른 연소기 산화제 개폐밸브 열림 특성)

  • Hong, Moongeun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.10
    • /
    • pp.801-807
    • /
    • 2020
  • Opening characteristics of a main oxidizer shut-off valve at different valve inlet pressures have been experimentally investigated. The pilot pressure at the moment of the valve opening increases linearly with increasing the valve inlet pressure and the increased pilot pressure reduces the valve travel time. As the pilot pressure increases at the moment of valve opening, the time to start opening the valve is delayed resulting in increasing the valve opening time. With the increment of the valve inlet pressure, the valve opening time is mainly determined by the time required for the pilot pressure to start opening the valve. Therefore the design of a pilot gas supply system can readily control the valve inlet pressure at the valve opening as well as the amount of oxidizer supplied to a combustion chamber during the engine startup.

A Comparison of Ground Reaction Force of High School Swimmers in Accordance with Starting Motions (수영 출발동작의 지면반력 차이 비교 II)

  • Kim, Kew-Wan
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.3
    • /
    • pp.69-80
    • /
    • 2007
  • The purpose of this study was to investigate the difference of ground reaction forces of swimming athletes during their starting motion and to find out the most effective starting motions which were used in swimming athletes. The subjects were 9 male and 8 female high school swimming athletes who were athletic career over 7 years and used three starting motions in competition. The ground reaction forces were measured from each athletes performing three starting motion each of the open grap starting motion, closed grap starting motion and track starting motion. For the measurement, the force platform of AMTI company was utilized, and the analysis on measured ground reaction forces were used of Biosoft(Ver. 1.0). The items measured were stance time, Fz max deceleration force and Fz max deceleration force time, Fz mid stance force and Fz mid stance force time, Fz max acceleration force and Fz max acceleration force time, Torque maximum and Torque maximum time, Torque average, Excursion along Y axis of center of pressure of foot, Excursion along X axis of center of pressure of foot, Length of center of pressure of foot, Average velocity of center of pressure of foot. The data measured by the closed grap starting motion, open grap starting motion and track starting motion were analyzed by one-way repeated ANOVA. The results were as follows ; 1. The Fz max deceleration force time, Fz mid stance force, Fz max acceleration force, Torque maximum and Torque maximum time, Excursion along Y axis of center of pressure of foot, Average velocity of center of pressure of foot were significantly fast and large in the closed grap starting motion then open grap starting motion and track starting motion. 2. The Excursion along Y axis of center of pressure of foot was significantly long in the closed grap starting motion then open grap starting motion and track starting motion.

A Study on Cavity Pressure and Tensile Strength of Injection Molding (사출성형에서 캐비티압력과 인장강도에 관한 연구)

  • Yoo, J.H.;Kim, H.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.110-116
    • /
    • 1994
  • In this research, the tensile strength of molded parts and pressure distribution were analyzed to study the cavity filling stage and packing stage in injection molding. The measurement of cavity pressure was obtained by a data acquisition system with the installation of transducers in the cavity. Molded parts were tested by a universal testing machine to obtain the tensile strength. For the experimental work, the tensile strength of molded parts increased with longer packing time and exact freezing time of the gate was obtained by a cavity pressure curve. In addition, the effect of packing did not occur and tensile strength was almost constant after early 1.5 sec of the freezing time of gate. Density tended to be higher about 0.2% due to a larger degree of mold temperature and melt temperature. Also, changing pressure in the cavity was effectively sensed. Thereafter, the possibility of the development of pattern recognition expert system was confirmed on the basis of the experimental results.

  • PDF

Cylinder Pressure based Real-Time IMEP Estimation of Diesel Engines (실린더 압력을 이용한 디젤엔진의 실시간 IMEP 추정)

  • Kim, Do-Hwa;Oh, Byoung-Gul;Ok, Seung-Suk;Lee, Kang-Yoon;SunWoo, Myoung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.118-125
    • /
    • 2009
  • Calculation of indicated mean effective pressure(IMEP) requires high cylinder pressure sampling rate and heavy computational load. Because of that, it is difficult to implement in a conventional electronic control unit. In this paper, a cylinder pressure based real-time IMEP estimation method is proposed for controller implementation. Crank angle at 10-bar difference pressure($CA_{DP10}$) and cylinder pressure difference between $60^{\circ}$ ATDC and $60^{\circ}$ BTDC($DP_{deg}$) are used for IMEP estimation. These pressure variables can represent effectively start of combustion(SOC) and fuel injection quantity respectively. The proposed IMEP estimation method is validated by transient engine operation using a common-rail direct injection diesel engine.

Comparison of bimanual laryngoscopy, backward-rightward pressure, and cricoid pressure in difficult airway management: A manikin study (어려운 기도를 가진 마네킹에게 양손후두경법, 우측-후방압박법과 반지연골압박법 효율성 비교)

  • Choi, Hea-Kyung;Jung, Hyung-Keon
    • The Korean Journal of Emergency Medical Services
    • /
    • v.18 no.2
    • /
    • pp.35-43
    • /
    • 2014
  • Purpose: The purpose of this study was to establish novice user guidelines for efficient external laryngeal manipulation for intubation in difficult airway management. Methods: This study included 59 pre-qualified junior and senior emergency medical service students. The participants were instructed at random to intubate a manikin equipped with a cervical collar, thus simulating a difficult airway, using three types of external laryngeal manipulation: bimanual laryngoscopy, backward-rightward pressure, and cricoid pressure. The resultant intubation time and glottic view grade scores were estimated. Results: Intubation time was longest using the bimanual manipulation method, followed by cricoid pressure and backward-rightward pressure. A low Cormack-Lehane glottic view score was obtained regardless of the assisted compression method used. Conclusion: Backward-rightward pressure may be the most efficient method of external laryngeal manipulation on the basis of the intubation time and improvement in glottic view.

Estimation of Blood Pressure Diagnostic Methods by using the Four Elements Blood Pressure Model Simulating Aortic Wave Reflection (대동맥 반사파를 재현한 4 element 대동맥 혈압 모델을 이용한 혈압 기반 진단 기술의 평가)

  • Choi, Seong Wook
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.183-190
    • /
    • 2015
  • Invasive blood pressure (IBP) is measured for the patient's real time arterial pressure (ABP) to monitor the critical abrupt disorders of the cardiovascular system. It can be used for the estimation of cardiac output and the opening and closing time detection of the aortic valve. Although the unexplained inflections on ABP make it difficult to find the mathematical relations with other cardiovascular parameters, the estimations based on ABP for other data have been accepted as useful methods as they had been verified with the statistical results among vast patient data. Previous windkessel models were composed with systemic resistance and vascular compliance and they were successful at explaining the average systolic and diastolic values of ABP simply. Although it is well-known that the blood pressure reflection from peripheral arteries causes complex inflection on ABP, previous models do not contain any elements of the reflections because of the complexity of peripheral arteries' shapes. In this study, to simulate a reflection wave of blood pressure, a new mathematical model was designed with four elements that were the impedance of aorta, the compliance of aortic arch, the peripheral resistance, and the compliance of peripheral arteries. The parameters of the new model were adjusted to have three types of arterial blood pressure waveform that were measured from a patient. It was used to find the relations between the inflections and other cardiovascular parameters such as the opening-closing time of aortic valve and the cardiac output. It showed that the blood pressure reflection can bring wide range errors to the closing time of aortic valve and cardiac output with the conventional estimation based on ABP and that the changes of one-stroke volumes can be easily detected with previous estimation while the changes of heart rate can bring some error caused by unexpected reflections.

Non-Gaussian time-dependent statistics of wind pressure processes on a roof structure

  • Huang, M.F.;Huang, Song;Feng, He;Lou, Wenjuan
    • Wind and Structures
    • /
    • v.23 no.4
    • /
    • pp.275-300
    • /
    • 2016
  • Synchronous multi-pressure measurements were carried out with relatively long time duration for a double-layer reticulated shell roof model in the atmospheric boundary layer wind tunnel. Since the long roof is open at two ends for the storage of coal piles, three different testing cases were considered as the empty roof without coal piles (Case A), half coal piles inside (Case B) and full coal piles inside (Case C). Based on the wind tunnel test results, non-Gaussian time-dependent statistics of net wind pressure on the shell roof were quantified in terms of skewness and kurtosis. It was found that the direct statistical estimation of high-order moments and peak factors is quite sensitive to the duration of wind pressure time-history data. The maximum value of COVs (Coefficients of variations) of high-order moments is up to 1.05 for several measured pressure processes. The Mixture distribution models are proposed for better modeling the distribution of a parent pressure process. With the aid of mixture parent distribution models, the existing translated-peak-process (TPP) method has been revised and improved in the estimation of non-Gaussian peak factors. Finally, non-Gaussian peak factors of wind pressure, particularly for those observed hardening pressure process, were calculated by employing various state-of-the-art methods and compared to the direct statistical analysis of the measured long-duration wind pressure data. The estimated non-Gaussian peak factors for a hardening pressure process at the leading edge of the roof were varying from 3.6229, 3.3693 to 3.3416 corresponding to three different cases of A, B and C.

Joining of Polymer Materials with Ultrasonic Welding (초음파 용접을 이용한 합성수지의 결합)

  • 이철구;정규창
    • Journal of Welding and Joining
    • /
    • v.16 no.2
    • /
    • pp.48-56
    • /
    • 1998
  • This study was performed to find the best bonding conditions by comparing mechanical properties in thermoplastic resin of polyethylene (PE) and polyamide (PA) adhesion. Following results were obtained from the tests with varying welding time and welding pressure. Satisfactory adhesion was executed in ultrasonic welding for the same materials of PE and PA. The best welding conditions were found to be welding time of 1 second, welding pressure of 250kPa for PE-PE weding, 2 second and 350kPa for PA-PA welding. Welding time and welding pressure end to increase with the increase of materials strength. Dissimilar materials were adhered when adhesion and ultrasonc welding were performed simultaneously. The observation of the structure of ultrasonic welding area with microscope showed differenticated structures between well adhered region and badly adhered region.

  • PDF