• Title/Summary/Keyword: pressure sensor

Search Result 1,578, Processing Time 0.036 seconds

A Study on the Fabrication and Electrical Characteristics of Hydraulic Pressure Sensors by Using Ceramics Materials (세라믹소재를 이용한 해수압센서 제작 및 전기적 특성 연구)

  • Park, Sung-Hyun;Kim, Eun-Sup;Jung, Jung-Kyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.6
    • /
    • pp.384-389
    • /
    • 2015
  • In this paper, we fabricated ceramic body and sapphire wafer in order to develop a hydraulic pressure sensor with high sensitivity and high temperature stability. The sapphire wafer was adopted with a membrane of capacitance ceramic pressure sensor. The capacitance value of the sensor for the finite element analysis(FEM) showed a linear pressure characteristics. Membrane was processed with a diameter of 32.4 mm and a thickness of 1 mm by using alumina powders. Ceramic body was processed with a diameter 32.4 mm and a thickness 5 mm. The capacitance pressure sensor was made with high heat treatment of the ceramic body and the sapphire wafer. Initially capacitance of the pressure sensor was 50 pF and a capacitance of 110 pF was measured from 5 bar pressure. Output voltage of 5 V was appeared at 5 bar pressure.

A Study on the Development of a Novel Pressure Sensor based on Nano Carbon Piezoresistive Composite by Using 3D Printing (3D 프린팅을 활용한 탄소 나노 튜브 전왜성 복합소재 기반 압력 센서 개발 연구)

  • Kim, Sung Yong;Kang, Inpil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.3
    • /
    • pp.187-192
    • /
    • 2017
  • This paper presents an ongoing study to develop a novel pressure sensor by means of a Nano Carbon Piezoresistive Composite (NCPC). The sensor was fabricated using the 3D printing process. We designed a miniaturized cantilever-type sensor electrode to improve the pressure sensing performance and utilized a 3D printer to build a small-sized body. The sensor electrode was made of 2 wt% MWCNT/epoxy piezoresistive nano-composite, and the sensor body was encapsulated with a pipe plug cap for easy installation to any pressure system. The piezoresistivity responses of the sensor were converted into stable voltage outputs by using a signal processing system, which is similar to a conventional foil strain gauge. We evaluated the pressure-sensing performances using a pressure calibrator in the lab environment. The 3D-printed cantilever electrode pressure sensor showed linear voltage outputs of up to 16,500 KPa, which is a 200% improvement in the pressure sensing range when compared with the bulk-type electrode used in our previous work.

Implementation and evaluation of the sensor assessing pressure and photoplethysmogram (압력맥파 및 광전용적맥파 검출용 일체형 센서의 구현 및 평가)

  • Kim, Gi-Ryon;Kim, Gwang-Nyeon;Choi, Byeong-Cheol;Jeon, Gye-Rok;Ham, Ki-Young;Suh, Duk-Joon;Jung, Dong-Keun
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.106-111
    • /
    • 2006
  • Pulse sensors generally have characteristics that cause a analytical error by the interference of signals according to tiny motion of body and pressure applied to skin. To resolve this problem, we implemented the sensor that is capable of simultaneously measuring pressure and PPG(photoplethymogram) in a state attached to skin. Pressure and PPG was recorded at the finger and wrist respectively to evaluate the usefulness of the implemented sensor. Then, it was observed that the shape of PPG from sensor changed by pressure pushing down skin. Results of this study suggested that it is possible to monitor a degree of skin pressurization and to guarantee a reliable measurement by simultaneously measuring pressure and PPG using implemented integrated sensor when measuring PPG on the wrist or the finger.

Real-time Blood Pressure Monitoring in Porcine Tibial Artery Using LC Resonant Pressure Sensor (LC 공진형 압력 센서를 이용한 돼지 경골 동맥의 실시간 혈압 측정)

  • Choi, Won-Seok;Kim, Jin-Tae;Joung, Yeun-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.6
    • /
    • pp.445-450
    • /
    • 2012
  • We have developed an implantable wireless sensor for real time pressure monitoring of blood circulation system. MEMS (micro-electro-mechanical system) technology was adopted as a sensor development method. The sensor is composed of photolithographically patterned inductors and a distributed capacitor in gap between the inductors. A resulting LC resonant system produces its resonant frequency in range of 269 to 284 MHz at 740 mmHg. To read the resonant frequency changed by blood pressure variation, we developed a custom readout system based on a network analyzer functionality. The bench-top testing of the pressure sensors showed good mechanical and electrical functionality. A sensor was implanted into tibial artery of farm pig, and interrogated wirelessly with accurate readings of blood pressure. After 45 days, the sensor's electrical response and histopathology were studied with good frequency reading and biocompatibility.

Highly Sensitive Stretchable Electronic Skin with Isotropic Wrinkled Conductive Network

  • Seung Hwan Jeon;Hyeongho Min;Jihun Son;Tae Kon Ahn;Changhyun Pang
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.7-11
    • /
    • 2024
  • Soft-pressure sensors have numerous applications in soft robotics, biomedical devices, and wearable smart devices. Herein, we present a highly sensitive electronic skin device with an isotropic wrinkled pressure sensor. A conductive ink for soft pressure sensors is produced by a solution process using polydimethylsiloxane (PDMS), poly 3-hexylthiophene (P3HT), carbon black, and chloroform as the solvents. P3HT provides high reproducibility and conductivity by improving the ink dispersibility. The conductivity of the ink is optimized by adjusting the composition of the carbon black and PDMS. Soft lithography is used to fabricate a conductive elastic structure with an isotropic wrinkled structure. Two conductive elastic structures with an isotropic wrinkle structure is stacked to develop a pressure sensor, and it is confirmed that the isotropic wrinkle structure is more sensitive to pressure than when two elastic structures with an anisotropic wrinkle structure are overlapped. Specifically, the pressure sensor fabricated with an isotropic wrinkled structure can detect extremely low pressures (1.25 Pa). Additionally, the sensor has a high sensitivity of 15.547 kpa-1 from 1.25 to 2500 Pa and a linear sensitivity of 5.15 kPa-1 from 2500 Pa to 25 kPa.

MONO-MATERIAL PRSSURE-CONDUCTIVE RUBBER SENSOR WITH TEMPERATURE SENSITIVITY FOR REALIZING ARTIFICIAL SKIN SENSING

  • Yuji, Jun-ichiro;Shida, Katsunori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1314-1317
    • /
    • 1997
  • For realizing artificial skin sensing as a final goal, a mono-material pressure-conductive rubber sensor which is also sensitive for temperature is described. Firstly, discimination of the hardness and the thermal property of material using a proposed sensor is presented. Furthermore, a tactile sensor constints of four pressure-conductive rubber sensor to discriminate surface model which imitaties the surface roughness of material is proposed.

  • PDF

Quantitative Monitoring of Body Pressure Distribution Using Built-in Optical Sensors

  • Lee, Kang-Ho;Kwon, Yeong-Eun;Seo, Jihyeon;Lee, Byunghun;Lee, Dongkyu;Kwon, Ohwon
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.279-282
    • /
    • 2020
  • In this study, body pressure was quantitatively detected using built-in optical sensors, inside an air cushion seat. The proposed system visualizes the effect of the body pressure distribution on the air cushion seat. The built-in sensor is based on the time-of-flight (ToF) optical method, instead of the conventional electrical sensor. A ToF optical sensors is attached to the bottom surface of the air-filled cells in the air cushion. Therefore, ToF sensors are durable, as they do not come in physical contact with the body even after repeated use. A ToF sensor indirectly expresses the body pressure by measuring the change in the height of the air-filled cell, after being subjected to the weight of the body. An array of such sensors can measure the body pressure distribution when the user sits on the air cushion seat. We implemented a prototype of the air cushion seat equipped with 7 ToF optical sensors and investigated its characteristics. In this experiment, the ToF optical pressure sensor successfully identified the pressure distribution corresponding to a sitting position. The data were accessed through a mobile device.

Data processing of sensor output for correction of pressure measurement value of an anesthesia ventilator (마취기용 인공호흡기의 압력 측정값의 보정을 위한 센서 출력의 데이터 처리)

  • 박영준;이종수;김영길
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.1067-1070
    • /
    • 1999
  • Anesthesia gas to pour to patients affects the flow and volume as the pressure difference of an oxygen and an anesthesia gas. An anesthesia gas, being injurious and polluting an environment, must control the pressure of an oxygen gas because of being used by closing up tight. But a pressure sensor to use for measuring an oxygen gas appears other pressure as the characteristic and the error difference of elements to use for implementing an system. A medical machine such as an anesthesia ventilator must be accurate because of using for the person's body. So we intend to implement an system for a sensor pressure measurement not to be change regardless of an environment. This papers is the target that a sensor pressrue measurement to be changed in environment is equal to actual sensor pressure measurement. So an implemented system is using analog filter and digital filter to reduce a noise. And we are using auto-zeroing and calibration to correct a sensor pressure which is changed in environment. Through such a process we increase the accuracy and the confidence of an anesthesia ventilator by controlling the flow of an anesthesia gas.

  • PDF

A Study on Electrical Characteristics of a Capacitive Pressure Sensor Element to Measure the Pressure of Refrigerant of Air-Conditioner (에어컨 냉매압 측정용 정전용량형 압력센서 소자의 전기적 특성 연구)

  • Choi, Ga-Hyun;Chung, Woo-Young;Choi, Jung-Woon;Kim, Si-Dong;Min, Joon-Won
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.208-213
    • /
    • 2015
  • The purpose of this study is to optimize the design of a capacitive pressure sensor element using the simulation of electrical characteristics. The simulation of the ceramic sensor diaphragm ($Al_2O_3$) was performed by permitting pressure to change the curvature of the diaphragm. The pressure capacitance ($C_P$) was increased from 19.63 pF to 15.26 pF by applying pressure because the distance between the electrodes has been changed from $30{\mu}m$ to $15{\mu}m$. When the thickness of the diaphragm was changed to 0.46~0.52 mm, a larger capacitance change showed in accordance with the reduced thickness, which means an increase of sensitivity. However, considering the viewpoint of the signal linearity, it was selected for the optimum thickness of the diaphragm to 0.50 mm. The designed sensor element based on simulated results was tested to measure the output characteristics. Comparing of simulated and measured results, there was a margin of error of approximately 2%.

Development of Implantable Blood Pressure Sensor Using Quartz Wafer Direct Bonding and Ultrafast Laser Cutting (Quatrz 웨이퍼의 직접접합과 극초단 레이저 가공을 이용한 체내 이식형 혈압센서 개발)

  • Kim, Sung-Il;Kim, Eung-Bo;So, Sang-kyun;Choi, Jiyeon;Joung, Yeun-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.168-177
    • /
    • 2016
  • In this paper we present an implantable pressure sensor to measure real-time blood pressure by monitoring mechanical movement of artery. Sensor is composed of inductors (L) and capacitors (C) which are formed by microfabrication and direct bonding on two biocompatible substrates (quartz). When electrical potential is applied to the sensor, the inductors and capacitors generates a LC resonance circuit and produce characteristic resonant frequencies. Real-time variation of the resonant frequency is monitored by an external measurement system using inductive coupling. Structural and electrical simulation was performed by Computer Aided Engineering (CAE) programs, ANSYS and HFSS, to optimize geometry of sensor. Ultrafast laser (femto-second) cutting and MEMS process were executed as sensor fabrication methods with consideration of brittleness of the substrate and small radial artery size. After whole fabrication processes, we got sensors of $3mm{\times}15mm{\times}0.5mm$. Resonant frequency of the sensor was around 90 MHz at atmosphere (760 mmHg), and the sensor has good linearity without any hysteresis. Longterm (5 years) stability of the sensor was verified by thermal acceleration testing with Arrhenius model. Moreover, in-vitro cytotoxicity test was done to show biocompatiblity of the sensor and validation of real-time blood pressure measurement was verified with animal test by implant of the sensor. By integration with development of external interrogation system, the proposed sensor system will be a promising method to measure real-time blood pressure.