• Title/Summary/Keyword: pressure ratio

Search Result 5,652, Processing Time 0.027 seconds

The Relationship between the Serum Aspartate Aminotransferase/Alanine Aminotransferase Ratio and Pulse Pressure in Korean Adults with Hypertension (대한민국 고혈압 성인에서 아스파르트산 아미노전이효소/알라닌 아미노전이효소 비율과 맥압의 관련성)

  • Yoon, Hyun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.53 no.3
    • /
    • pp.241-248
    • /
    • 2021
  • The present study was conducted to assess the relationship between aspartate aminotransferase/alanine aminotransferase (AST/ALT) ratio and pulse pressure in Korean adults with hypertension. Data from 1,515 adults from the sixth Korean National Health and Nutrition Examination Survey (KNHANES VI-3, 2015) were analyzed. There were several key findings in the present study. First, aspartate aminotransferase (odds ratio [OR], 1.018; 95% confidence interval [CI], 1.002 to 1.033), alanine aminotransferase (OR, 0.982; 95% CI, 0.969 to 0.996), and aspartate aminotransferase/alanine aminotransferase ratio (OR, 1.367; 95% CI, 1.027 to 1.819) were the independent factors determining high pulse pressure. Second, after adjusting for related variables [age, gender, smoking, alcohol consumption, regular exercise, total cholesterol (TC), triglycerides (TGs), high-density lipoprotein-cholesterol (HDL-C), fasting plasma glucose (FPG), body mass index (BMI), and waist circumference (WC)], the ORs of high pulse pressure with the 1st quartile as a reference were significantly higher in the 4th quartile of aspartate aminotransferase/alanine aminotransferase ratio [1.632 (95% CI, 1.113~2.393)]. The high pulse pressure was positively associated with aspartate aminotransferase and alanine aminotransferase/alanine aminotransferase ratio in Korean adults with hypertension, but was inversely associated with alanine aminotransferase.

Performance Evaluation and Improvement of Medium and Small Scale Rice Polishers (I) -small scale rice polisher - (중.소형 연미기의 성능평가 및 성능개선에 관한 연구 (I) -소형 연미기에 대하여 -)

  • 정종훈;최영수;권홍관
    • Journal of Biosystems Engineering
    • /
    • v.23 no.3
    • /
    • pp.245-252
    • /
    • 1998
  • The structural characteristics of a small scale rice polisher was analyzed to improve its performance. Spraying characteristic of nozzles used for rice polishing was also analyzed by a machine vision system. The internal pressure of the polishing chamber was measured according to outlet resistance, water spraying, and roller shaft speed. In addition, the performance of the rice polisher was evaluated to improve it in the basis of internal pressure in polishing chamber, whiteness, and broken rice ratio of clean rice according to the operating conditions. Actual nozzle discharge rate and drop size were 125 cc/min and 86~97 ${\mu}{\textrm}{m}$, respectively. In the case of water spraying on rices, the internal pressure showed 4.9~9.8N/$\textrm{cm}^2$ increase. broken rice ratio decreased, and there was no difference in whiteness. The internal pressure inueased up to two times with the increase of the outlet resistance. Also, the pressure at the upper part of screen was one and half times as high as the pressure at the lower part. In the case of water spraying rate of 150 cc/min, the roller shaft speed of 850 rpm resulted in no difference in whiteness and decrease of 0.3% in broken rice ratio, comparing to the roller shaft speed of 950 rpm.

  • PDF

Numerical Analysis on the Pressure Characteristics in a Snubber for Hydrogen Compressor (수소압축기용 스너버 내부 압력특성에 관한 수치해석)

  • Shim, K.J.;Yi, C.S.;Akbar, W.A;Chung, H.S.;Jeong, H.M.;Lee, C.J.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.76-81
    • /
    • 2007
  • The objective of this study is to find the optimum design of a snubber using CFD analysis. Several dimensions such as snubber height(H), snubber diameter(D), buffer width and buffer angle are considered in this study. The present study shows that the CFD can be applied to study the pressure characteristics inside the snubber. The objective of the snubber design optimization are to minimize a pressure loss and the pulsation ratio. Numerical results such as particle track, pressure distribution and turbulent kinetic energy are used to analyze the critical area and pressure behavior inside the snubber. As a result, snubber model with H/D ratio of 3.23 and buffer angle of $40^{\circ}$ has a minimum pressure loss. On the other hand, snubber model with H/D ratio 4.41 and buffer angle $10^{\circ}$ has a minimum pulsation ratio.

  • PDF

Influence of changing combustor pressure and secondary fuel injection on flame stabilization and emission characteristic in swirl flame (연소실 압력변동과 2차 연료 분사가 스월 화염에서 화염안정화와 배출 특성에 미치는 영향)

  • Kim, Jong-Ryul;Choi, Gyung-Min;Kim, Duck-Jool
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.133-138
    • /
    • 2007
  • Influence of changing combustor pressure on flame stabilization and emission index in the swirl-stabilized flame was investigated The combustor pressure was controlled by suction fan at combustor exit. Pressure index ($P^{\ast}=P_{abs}/P_{atm}$), where $P_{abs}$ and $P_{atm}$ indicated the absolute pressure and atmosphere pressure, respectively, was controlled in the range of $0.7{\sim}1.3$ for each equivalence ratio conditions. The flammable limits of swirl flames were largely influenced by changing combustor pressure and they showed similar tendency with laminar flames. $NO_x$ emission index decreased with decreasing pressure index for overall equivalence ratio conditions. R.m.s. of pressure fluctuations is increased with decreasing combustor pressure. This flame fluctuation caused incomplete combustion , hence CO emission index increased. These oscillating flames were measured by simultaneous $CH{\ast}$ chemiluminescence time-series visualization and pressure fluctuation measurement.

  • PDF

The Effect of Rotation of Discharge Hole on the Discharge Coefficient and Pressure Coefficient (송출공의 회전이 송출계수와 압력계수에 미치는 영향)

  • Ha, Kyoung-Pyo;Ku, Nam-Hee;Kauh, S.Ken
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.948-955
    • /
    • 2003
  • Pressure coefficient in rotating discharge hole was measured to gain insight into the influence of rotation to the discharge characteristics of rotating discharge hole. Pressure measurements were done by the telemetry system that had been developed by the authors. The telemetry system measures static pressure using piezoresistive pressure sensors. Pressure coefficients in rotating discharge hole were measured in longitudinal direction and circumferential direction with various rotating speed and 3 pressure ratios. From the results, the pressure coefficient, and therefore the discharge coefficient, is known to decrease with the increase of Ro number owing to the increase of flow approaching angle to the discharge hole inlet. However, there exists critical Ro number where the decrease rate of discharge coefficient with the increase of Ro number changes abruptly; flow separation occurs from the discharge hole exit at this critical Ro number. Critical Ro number increases with the increase of length-to-diameter ratio, but the increase is small where the length-to-diameter ratio is higher than 3. The decrease rate of discharge coefficient with the increase of Ro number depends on the pressure recovery at the discharge hole, and the rate is different from each length-to-diameter ratio; it has tendency that the short discharge hole shows higher decrease rate of discharge coefficient.

Combustion Characteristics of Methane-Air Mixture in a Constant Volume Combustion Chamber(1): Homogeneous Charge (정적연소기에서의 메탄-공기 혼합기의 연소특성(1) : 균질급기)

  • 최승환;전충환;장연준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.48-57
    • /
    • 2003
  • A cylindrical constant volume combustion chamber was used to investigate the flow characteristics at spark plug and the combustion characteristics of homogeneous charge methane-air mixture under various initial pressure, excess air ratio and ignition times in quiescent mixture. The flow characteristics such as mean velocity and turbulence intensity was analyzed by hot wire anemometer. Combustion pressure development measured by piezoelectric pressure transducer and flame propagation acquired by ICCD camera were used to investigate the effect of initial pressure, excess air ratio and ignition times on pressure, combustion duration, flame speed and burning velocity. Mean velocity and turbulence intensity had the maximum value at 200 or 300ms and then decreased to near 0 value gradually after 3 seconds. Combustion duration, flame speed and burning velocity were observed to be promoted with excess air ratio of 1.1, lower initial pressure and ignition time of 300ms.

An Experimental Study of Sonic/Supersonic Ejector Flows (음속/초음속 이젝터 유동에 관한 실험적 연구)

  • Kim, Hui-Dong;Choe, Bo-Gyu;Gwon, O-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.640-647
    • /
    • 2002
  • An experimental investigation or the sonic and supersonic air ejector systems has beer conducted to develop design and prediction programs for practical ejector system. Five different primary nozzles have been employed to operate the ejector systems in the ranges of low and moderate operating pressure ratios. The ejector operating pressure ratio for the secondary chamber pressure to be minimized has a strong influence of the ejector throat ratio. The pressure inside the ejector diffuser is not dependent on the primary nozzle configurations employed but only a function of the ejector operating pressure ratio. Experimental results show that a supersonic ejector system is more desirable for obtaining high vacuum pressure of the secondary chamber than a sonic ejector system.

Construction of the Intelligence Stress Predictor for Compression Strength Evaluation (압축강도 평가를 위한 지능형 응력예측기 구축)

  • 박원규;우영환;이종구;윤인식
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.95-101
    • /
    • 2001
  • This work is concerned with construction of the intelligence stress predictor far compression strength evaluation using neural network-ultrasonic waves. The contact pressure in jointed plates was measured by using ultrasonic technique. Neural network is used to evaluate and predict contact pressure from the results of the calibration curves. The organized neural system was leaned with the accuracy of 99%, as a result of learning the ultrasonic echo ratio to the contact pressure measurement between SM45C and STS410 materials. And it could be evaluated and predicted with the accuracy of 90% in the evaluation of ultrasonic echo ratio difference in the same surface roughness and contact pressure, and 85% in the prediction of virtual ultrasonic echo ratio. Thus the proposed stress predictor is very useful for the evaluation and prediction of the contact pressure between SM45C and STS410 materials.

  • PDF

Design of Ratio Control Valve for a Pressure Control Type CVT Using P-Line (P-라인을 이용한 압력제어방식 CVT 변속비제어밸브 설계)

  • 류완식;이용준;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.145-151
    • /
    • 2004
  • In this paper, a pressure control type ratio control valve(RCV) is designed for a metal belt CVT. Steady state and transient characteristics of the pressure control CVT are investigated by simulations and experiments. In addition, P-line is proposed to predict the shift performance. It is found that the bigger the pressure margin, the faster the shift response. It is expected that the P-line can be used in design of the RCV to meet the desired shift performance.

Design of the long perforated pipe in water treatment process using CFD (전산유체역학(CFD)를 활용한 정수공정에서 길이가 긴 유공관 설계)

  • Cho, Young-Man;Yoo, Soo-Jeon;Roh, Jae-Soon;Bin, Jae-Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.3
    • /
    • pp.295-305
    • /
    • 2010
  • Role of the perforated pipe is to drain the water with equal pressure and velocity through the holes of perforated pipe. The perforated pipe is being used in many processes of water treatment system, however, the design parameter of perforated pipe is not standardized in korea. In this study, we have found the design parameter of perforated pipe in the water treatment system using the Computational Fluid Dynamics (CFD). The uniformity of outflow from the perforated pipe is directly affected according to area ratio(gross area of holes/surface area of the perforated pipe). In other words, the uniformity of outflow is improved as area ratio is smaller. Also, at the same area ratio, the uniformity of outflow is improved as number of holes is increase. Specially, in case of the two holes per length of pipe diameter(2/D) shows the most uniformity of outflow and the best hydraulic with the smaller pressure drop. The uniformity of outflow is aggravated and the pressure drop of pipe is decrease as length of pipe is longer. In case of that pipe length is 10m and above, the pressure drop decreased about 30% when diameter ratio is 40% with 0.2% of area ratio by comparison with 0.1% of area ratio.