• Title/Summary/Keyword: pressure infiltration

Search Result 208, Processing Time 0.024 seconds

The Development of Rail-Transport Operation Control based on Unsaturated Soil Mechanics Concept (불포화토이론을 이용한 강우시 열차운전규제기준 개발)

  • Kim, Hyun-Ki;Shin, Min-Ho;Kim, Soo-Sam
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.1 s.12
    • /
    • pp.25-31
    • /
    • 2004
  • Infiltration of rainfall causes railway embankment to be unstable and may result in failure. Basic relationship between the rainfall and stability of railway embankment is defined to analyze the stability of embankment by rainfall. An experimental study for defining of infiltration rate of rainfall into slope is conducted in the lab. The results of Rainfall Infiltration show that rainfall Infiltration is not equal to infiltration as like reservoir because rate of rainfall infiltration is controlled by slope angle. Based on these results, boundary condition of rainfall is altered and various numerical analysis are performed. The variation of shear strength, the degree of saturation and pore-water pressure for railway slope during rainfall can be predicted and the safety factor of railway slope can be expressed as the function of rainfall amount, namely rainfall index. Therefore, it is judged that this rainfall index can be a good tool for the rail-transport operation control.

Junctional rhythm with severe hypotension following infiltration of lidocaine containing epinephrine during dental surgery

  • Jeon, Younghoon;Shim, Jihye;Kim, Hyunjee
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.20 no.2
    • /
    • pp.89-93
    • /
    • 2020
  • We experienced an unusual case of accelerated junctional rhythm with severe hypotension after infiltration of lidocaine containing epinephrine during dental surgery under general anesthesia. The patient's electrocardiogram exhibited retrograde P-waves following the QRS complex, which could be misinterpreted as ST-segment depression. As a temporary measure, administration of ephedrine restored the patient's blood pressure to normal levels. The importance of this case lies in its demonstration of an unexpected and serious side effect of commonly used epinephrine infiltration. This case also highlights the need for accurate interpretation of the electrocardiogram and comprehensive understanding of best practices for patient management.

Numerical Simulations of the Moisture Movement in Unsaturated Bentonite Under a Thermal Gradient

  • Park, J.W.;K. Chang;Kim, C.L.
    • Nuclear Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.62-72
    • /
    • 2001
  • The one-dimensional finite element program was developed to analyze the coupled behavior of heat, moisture, and air transfer in unsaturated porous media. By using this program, the simulation results were compared with those from the laboratory infiltration tests under isothermal condition and temperature gradient condition, respectively. The discrepancy of water uptake was found in the upper region of a bentonite sample under isothermal condition between numerical simulation and laboratory experiment. This indicated that air pressure was built up in the bentonite sample which could retard the infiltration velocity of liquid. In order to consider the swelling phenomena of compacted bentonite which cause the discrepancy of the distribution of water content and temperature, swelling and shrinkage factors were incorporated into the finite element formulation. It was found that these factors could be effective to represent the moisture diffusivity and unsaturated hydraulic conductivity due to volume change of bentonite sample.

  • PDF

Study on Rainfall Infiltration Into Vault of Near-surface Disposal Facility Based on Various Disposal Scenarios

  • Kwon, Mijin;Kang, Hyungoo;Cho, Chunhyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.4
    • /
    • pp.503-515
    • /
    • 2021
  • In this study, rainfall infiltration in vault of the second near-surface disposal facility was evaluated on the basis of various disposal scenarios. A total of four different disposal scenarios were examined based on the locations of the radioactive waste containers. A numerical model was developed using the FEFLOW software and finite element method to simulate the behavior of infiltrated water in each disposal scenario. The effects of the disposal scenarios on the infiltrated water were evaluated by estimating the flux of the infiltrated water at the vault interfaces. For 300 years, the flux of infiltrated water flowing into the vault was estimated to be 1 mm/year or less for all scenario. The overall results suggest that when the engineered barriers are intact, the flux of infiltrated water cannot generate a sufficient pressure head to penetrate the vault. In addition, it is confirmed that the disposal scenarios have insignificant effects on the infiltrated water flowing into the vault.

Pressure-infiltration of Fe3O4-nanoparticles Into Porous Silicon and a Packing Density Monitoring Technique (다공성실리콘내 Fe3O4 나노입자의 압력침착과 채움밀도 모니터링 방법)

  • Lee, Joo Hyeon;Lee, Jae Joon;Lee, Ki Won
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.385-391
    • /
    • 2015
  • In this paper, we propose a new method to infiltrate $Fe_3O_4$-nanoparticles into a porous silicon film and a monitoring technique to detect packing density of nanoparticles within the film. Recently, research to use porous silicon as a drug carrier or a new functional sensor material by infiltrating $Fe_3O_4$-nanoparticles has been extensively performed. However, it is still necessary to enhance the packing density and to develop a monitoring technique to detect the packing density in real time. In this light, we forcibly injected a nanoparticle solution into a rugate-structured free-standing porous silicon (FPS) film by applying a pressure difference between the two sides of the film. We found that the packing density by the pressure-infiltration method proposed in this paper is enhanced, relative to that by the previous diffusion method. Moreover, a continuous shift in wavelength of the rugate reflectance peak measured from the film surface was observed while the nanoparticle solution was being injected. By exploiting this phenomenon, we could qualitatively monitor the packing density of $Fe_3O_4$-nanoparticles within the FPS film with the injection volume of the nanoparticle solution.

Stability Analysis of Unsaturated Soil Slope by Coupled Hydro-mechanical Model Considering Air Flow (공기흐름을 고려한 수리-역학적 연동모델에 의한 불포화 토사사면의 안정해석)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.1
    • /
    • pp.19-33
    • /
    • 2016
  • Stability analysis based on the limit equilibrium method combined with the result of infiltration analysis is commonly used to evaluate the effect of rainfall infiltration on the slope stability. Soil is a three-phase mixture composed of solid particle, water and air. Therefore, a fully coupled mixture theories of stress-deformation behavior and the flow of water and air should be used to accurately analyze the process of rainfall infiltration through soil slope. The purpose of this study is to study the effect of interaction of air and water flow on the mechanical stability of slope. In this study, stability analyses based on the coupled hydro-mechanical model of three-phases were conducted for slope of weathered granite soil widespread in Korea. During the process of hydro-mechanical analysis strength reduction technique was applied to evaluate the effect of rainfall infiltration on the slope stability. The results showed an increase of air pressure during infiltration because rain water continuously displaced the air in the unsaturated zone. Such water-air interaction in the pore space of soil affects the stress-deformation behavior of slope. Therefore, the results from the three-phase model showed different behavior from the solid-water model that ignores the transport effect of air in the pores.

Behavior of Failure of Agricultural Reservoirs Embankment Reinforced by Geotextile under Overtopping Condition (지오텍스타일로 보강된 농업용 저수지 제체의 붕괴거동)

  • Lee, Dal Won;Noh, Jae Jin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.2
    • /
    • pp.59-64
    • /
    • 2014
  • In this study, the large scale test was performed to investigate the behavior of failure for the embankment and spillway transitional zone by overtopping. The pore water pressure, earth pressure, settlement and failure pattern of covering embankment with geotextile were compared and analyzed. The pore water pressure showed a small change in the spillway transition zone and core, indicating that the geotextile efficiently reinforced the embankment. The earth pressure decreased the infiltration of the pore water only in inclined cores type to secure local stability. The behavior of failure started from the bottom and gradually progressed upwards. After the intermediate overtopping period (100 min), width and depth of the seepage erosion were very small due to the effect of geotextile which delayed failure. Therefore, the reinforced method by geotxtile was a very effective method to respond to the emergency due to overtopping.

Mesocarbon microbead densified matrix graphite A3-3 for fuel elements in molten salt reactors

  • Wang, Haoran;Xu, Liujun;Zhong, Yajuan;Li, Xiaoyun;Tang, Hui;Zhang, Feng;Yang, Xu;Lin, Jun;Zhu, Zhiyong;You, Yan;Lu, Junqiang;Zhu, Libing
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1569-1579
    • /
    • 2021
  • This study aims to provide microstructural characterization for the matrix graphite which molten salt reactors (MSRs) use, and improve resistance to molten salt infiltration of the matrix graphite for fuel elements. Mesocarbon microbeads (MCMB) densified matrix graphite A3-3 (MDG) was prepared by a quasi-isostatic pressure process. After densification by MCMBs with average particle sizes of 2, 10, and 16 ㎛, the pore diameter of A3-3 decreased from 924 nm to 484 nm, 532 nm, and 778 nm, respectively. Through scanning electron microscopy, the cross-section energy spectrum and time-of-flight secondary ion mass spectrometry, resistance levels of the matrix graphite to molten salt infiltration were analyzed. The results demonstrate that adding a certain proportion of MCMB powders can improve the anti-infiltration ability of A3-3. Meanwhile, the closer the particle size of MCMB is to the pore diameter of A3-3, the smaller the average pore diameter of MDG and the greater the densification. As a matrix graphite of fuel elements in MSR was involved, the thermal and mechanical properties of matrix graphite MDG were also studied. When densified by the MCMB matrix graphite, MDGs can meet the molten salt anti-infiltration requirements for MSR operation.

Anesthetic efficacy of single buccal infiltration of 4% articaine compared to routine inferior alveolar nerve block with 2% lidocaine during bilateral extraction of mandibular primary molars: a randomized controlled trial

  • Bahrololoomi, Zahra;Rezaei, Maedeh
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.21 no.1
    • /
    • pp.61-69
    • /
    • 2021
  • Background: Inferior alveolar nerve block (IANB) using lidocaine 2% is commonly used for anesthetizing primary mandibular molars; however, this technique has the highest level of patient discomfort compared to other local anesthesia techniques. Therefore, alternative anesthesia techniques are necessary. The aim of this study was to evaluate the efficacy of a single buccal infiltration of 4% articaine with IANB using 2% lidocaine, for the bilateral extraction of primary mandibular molars. Methods: The present study was conducted on 30 patients aged between 6 and 9 years, who required the extraction of bilateral primary mandibular molars. The patients were randomly divided into two groups as follows: In the first session, Group A received IANB with lidocaine 2% and group B received infiltration with articaine 4%. In the second session, another injection method was performed on the opposite side. The Wong-Baker Facial Pain scale (WBFPS), Face Leg Activity Cry, and Consolability (FLACC), and physiologic parameters were used to assess pain perception. Results: The independent t-test showed no statistically significant difference in blood pressure and heart rate before and after extraction (P > 0.05). The mean FLACC index in the lidocaine and articaine groups was 0.89 and 1.36, respectively; there was no statistically significant difference between them (P > 0.05). According to the results of the chi-square test, there was no statistically significant difference between the groups for WBFPS (P > 0.05). Conclusion: The articaine infiltration technique may be an alternative to the IANB for the extraction of primary mandibular molars.

Evaluation of Carbon Fiber distribution in Unidirectional CF/Al Composites by Two-Dimensional Spatial Distribution Method

  • Lee, Moonhee;Kim, Sungwon;Lee, Jongho;Hwang, SeungKuk;Lee, Sangpill;Sugio, Kenjiro;Sasaki, Gen
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.1
    • /
    • pp.29-36
    • /
    • 2018
  • Low pressure casting process for unidirectional carbon fiber reinforced aluminum (UD-CF/Al) composites which is an infiltration route of molten Al into porous UD-CF preform has been a cost-effective way to obtain metal matrix composites (MMCs) but, easy to cause non-uniform fiber distribution as CF clustering. Such clustered CFs have been a problem to decrease the density and thermal conductivity (TC) of composites, due to the existence of pores in the clustered area. To obtain high thermal performance composites for heat-sink application, the relationship between fiber distribution and porosity has to be clearly investigated. In this study, the CF distribution was evaluated with quantification approach by using two-dimensional spatial distribution method as local number 2-dimension (LN2D) analysis. Note that the CFs distribution in composites sensitively changed by sizes of Cu bridging particles between the CFs added in the UD-CF preform fabrication stage, and influenced on only $LN2D_{var}$ values.