• 제목/요약/키워드: pressure in tube

검색결과 1,951건 처리시간 0.026초

헬리컬코일형 $CO_2$ 가스쿨러의 열전달과 압력강하 (Heat Transfer and Pressure Drop of $CO_2$ Gas Cooler in a Helically Coiled Tube)

  • 경남수;유태근;손창효;오후규
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.246-247
    • /
    • 2005
  • The paper presents the heat transfer characteristics during cooling process of carbon dioxide($CO_2$) in a helically coiled tube. The main components of the apparatus consist of a receiver, a variable speed pump, a mass flowmeter, a pre-heater, a gas cooler(test section) and an isothermal tank. The test section with the inner diameter 4.55 [mm] is a tube in tube type heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus. The main results were summarized as follows : The heat transfer coefficient increases with respect to the decrease of the gas cooler pressure in a supercritical region and the increase of the refrigerant mass flux. The pressure drop decreases in increases of the gas cooler pressure and increases with respect to increases the refrigerant mass flux.

  • PDF

충격파관 저압실/고압실 직경비에 따른 압력변동에 대한 수치해석 (A Numerical Study on Pressure Variation in a Shock Tube by Changing the Diameter Ratio of Low-Pressure (Driven) to High-Pressure (Driver) Part)

  • 왕위엔강;김철진;손채훈;정인석
    • 한국연소학회지
    • /
    • 제21권4호
    • /
    • pp.16-22
    • /
    • 2016
  • Pressure and temperature variations in a shock tube have been studied numerically by changing the diameter ratio of a driven part to a driver part. There are five cases where the adopted diameter ratios are 40%, 50%, 60%, 80%, and 100% respectively. The diameter of the driver part remains unchanged meanwhile the shock tube driven part diameter increases from 40% to 100% of the driver part. In the 100% ratio case, the driver part and driven parts have the same diameter of 66.9 mm. As the diameter ratio decreases, the pressure in the shock tube and available test time are increased.

수평관내 이산화탄소의 냉각열전달과 압력강하 특성에 관한 연구 (Heat transfer and pressure drop characteristics during cooling process of supercritical $CO_2$ in a horizontal tube)

  • 손창효;김종열;노건상;구학근;박기원;오후규
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.244-245
    • /
    • 2005
  • This paper presents the heat transfer and pressure drop characteristics during cooling process of carbon dioxide in a horizontal tube. The test section is a tube in tube type heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus. It was made of a stainless steel tube with the inner diameter of 7.75 [mm], the outer 2 diameter of 9.53 [mm] and length of 6000 [mm]. The refrigerant mass fluxes were $200{\sim}400$ [kg/$m^2s$] and the average pressure varied from 7.5 [MPa] to 10.0 [MPa]. The main results were summarized as follows The heat transfer coefficient of supercritical $CO_2$ increases in decrease of the gas cooler pressure. And the heat transfer coefficient increases with respect to the increase of the refrigerant mass flux. Among some correlations proposed in a transcritical region, Bringer-Smith's correlation has some analogy with experimental results. The pressure drop decreases in increase of the gas cooler pressure and increases with respect to increase the refrigerant mass flux.

  • PDF

세관을 이용한 Tube-in-Tube 열교환기내 R-22, R-407C 및 R-410A 응축열전달 특성 (Condensation Heat Transfer Characteristics of Tube-in-Tube Heat Exchanger using Small Diameter Tubes with R-22, R-407C and R-410A)

  • 박우종;최광일;박기원;오종택
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.657-662
    • /
    • 2006
  • The present paper dealt with an experimental study of condensation heat transfer coefficients with refrigerant R-22, R-407C and R-410A, and was focused on pressure gradient and heat transfer coefficient in horizontal tube-in-tube heat exchangers using inner diameter of 4 mm, 3 mm and 2 mm in a 16.91 mm tube and length of 3,000 mm. Experiments were performed at inlet saturation temperature of 35 to $45^{\circ}C$ and mass flux ranges from 200 to $600 kg/m^2s$. The pressure gradient with inner tube diameter of 4.0 mm is higher 2.5 times than that of 8.0 mm. In tube-in-tube HEX, the pressure gradient of R-410A were lower than those of R-22 and R-407C. The condensation heat transfer coefficients increased with mass flux increase, but they decreased with saturation temperature increased. Condensation heat transfer coefficients of R-410A were a little higher than those of R-22 and R-407C. The condensation heat transfer coefficients of tube-in-tube HEX were about 40% higher than those of double tube HEX.

  • PDF

포강 내 압력을 고려한 효율적 포신 설계 (Efficient Design of Gun-Tube Considering Inner Pressure of Bore)

  • 김의빈;김규빈;박은교;오석환;노태성;조진연
    • 한국군사과학기술학회지
    • /
    • 제26권5호
    • /
    • pp.371-383
    • /
    • 2023
  • Artillery gun tube experiences very high pressure according to the blast of propellant charge. Therfore, it is essential to guarantee the structural safety of the gun tube. On the other hand, weight reduction of gun tube is also a crucial design factor since the agility of artillery vehicle directly leads to its survivability. In this line of thought, this work proposed an efficient design procedure which utilizes the convex combination of breech pressure and projectile base pressure time histories. Its efficiency is verified by comparing with other procedures. Other procedures utilize different computed max pressure rather than the convex combination design pressure. Additionally, a transient analysis is carried out considering the projectile movement and the corresponding pressure distribution through the newly developed ABAQUS user-subroutine. The analysis confirms the structural safety of the lightweight gun tube designed by the proposed method.

다공관형 초음속 배기노즐의 공력소음에 관한 연구 (A Study on the Aerodynamic Noise of a Supersonic Exhaust Nozzle of Perforated Tube)

  • 이동훈
    • 소음진동
    • /
    • 제9권1호
    • /
    • pp.113-120
    • /
    • 1999
  • A perforated tube nozzle as an exhaust noise suppressor of a high-speed civil transport(HSCT) is proposed. The experimental results for the near and far field sound. the visualization of jet structures and the static pressure distributions in the jet passing through a perforated tube are presented and discussed in comparison with those for a simple tube. It is shown that the perforated tube has an excellent performance to greatly reduce the shock-associated noise and that also the turbulent mixing noise is reduced in the range of a limited jet pressure ratio. This considerable noise reduction is due to the pressure relief caused by the through-flow through the perforated holes. Such a pressure relief results in the transformation of normal shock waves into weak Mach waves of X -type and increases the thrust force of the perforated tube nozzle.

  • PDF

Creep Analysis on Pressure Tube Wall Thickness Variation

  • Kim, Jung-Gyu;Hwang, Jong-Keun;Park, Keon-Woo;Kim, Tae-Hyung;Rhee, Hui-Nam
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(4)
    • /
    • pp.295-299
    • /
    • 1996
  • This analysis is to investigate the benefits and disadvantages of increasing the pressure tube wall thickness for CANDU reactor. Creep analysis of the pressure tube was performed for slightly enriched uranium (SEU) to establish the reduction in axial elogation and diametral creep provided by a thicker wall pressure tube.

  • PDF

초고압 커먼레일 연료분사튜브 원재료 강성 최적화를 위한 인발 공정에서의 Die와 Plug 각도 변경에 따른 해석적 연구 (An Analytical Study by Variation of Die and Plug Angle in Drawing Process for the Strength Optimization of Ultra High Pressure Common Rail Fuel Injection Tube Raw Material)

  • 안서연;박정권;김용겸;원종필;김현수;강인산
    • 한국자동차공학회논문집
    • /
    • 제24권3호
    • /
    • pp.338-344
    • /
    • 2016
  • The study is actively being performed to increase fuel injection pressure of common rail system among countermeasures to meet the emission regulation strengthen of the Diesel engine. The common rail fuel injection tube in such ultra high pressure common rail system has the weakest structural characteristics against vibration that is generated by fuel injection pressure and pulsation during engine operation and driving. Thus the extreme durability is required for common rail fuel injection tube, and the drawing process is being magnified as the most important technical fact for strength of seamless pipe that is the raw material of common rail tube. In this respect, we analyzed the characteristic of dimension and stress variation of the ultra high pressure common rail fuel injection tube by variation of Die and Plug angle in drawing process. Based on the analysis, we tried to obtain the raw material strength of common rail fuel injection tube for applying to the ultra high pressure common rail system. As a result, Plug angle is more important than entry angle of Die and we could obtain the target dimension and strength of the ultra high pressure common rail fuel injection tube through optimization of Plug angle.

스파크 플러그형 압력센서에서 연결관로의 동적특성과 압력왜곡의 보상에 관한 연구 (A study on dynamic characteristics in extension tube and correction of pressure distortion for a S/P type pressure transducer)

  • 한승국;김승수
    • 오토저널
    • /
    • 제13권3호
    • /
    • pp.32-42
    • /
    • 1991
  • In SI engine research the pressure data in cylinder is the most important fundamental ones leading to engine efficiencies and performances. It is, therefore, necessary to obtain accurate pressure data and yet it is often impossible to install a reliable data producing, flush-mounted type pressure transducer in a cylinder of small and medium size multicylinder SI engines. When flush mounting the transducer is not possible, the spark-plug type pressure transducer is commonly used as an alternative. In this case, the transmission tube of spark-plug type pressure transducer introduces distortions in the pressure signal. Efforts were made to understand the dynamic characteristics of spark-plug pressure transducer by shock tube tests and real engine experiments. In engine experiment the cylinder pressure data were simultaneously obtained by both flush mounted and spark-plug type pressure transducers of certain transmission tube geometry. Those pressure data collected by spark-plug type pressure transducer were tested for correction to flush mounted ones by the application of transfer function. As a result of the calibration the IMEP difference between F/M data and improved S/P data was shown to be corrected about 75-98% from the original ones.

  • PDF

튜브시스템에서 변동풍압의 보정 (Correction of Fluctuation Pressure by Tube System)

  • 유기표;김영문
    • 한국공간구조학회논문집
    • /
    • 제2권1호
    • /
    • pp.67-73
    • /
    • 2002
  • Measurement of fluctuating pressure by tube system is carefully designed due to the organ-pipe resonance. It is necessary to correct the pressure before analysis. The three method for correction the distortion fluctuation pressure short tube length and the frequency response functions and insert a restrictor in the tube to increase the damping. The first method is useful when the tube length is short. In second method, the distorted signal through the tubing transformed into the frequency domain, dividing by transfer function and inverse fourier transforming back into the time domain gives the required pressure signal. In this paper three types of tubing which have different length of 100cm, 150cm, 200cm were experimented the distorted signal and correct the distortion signal

  • PDF