• 제목/요약/키워드: pressure cooling

검색결과 1,363건 처리시간 0.022초

충진재(Filler)가 대향류형(Counter Flow Type) 냉각탑 유동에 미치는 영향에 대한 연구 (Effect of Filler on the Flow of Counter Flow Type Cooling Tower)

  • 신정훈;이준경;진철규
    • 한국산업융합학회 논문집
    • /
    • 제25권4_2호
    • /
    • pp.565-572
    • /
    • 2022
  • The white plume from the cooling tower can be generated by mixing between discharging hot and humid air and cold air outside. This causes various problems such as icing, traffic disturbances, and fire factors in the vicinity, moreover it can also damage the image of a company. Various methods can be used to prevent white plume, one of them is to install a heat exchanger at the outlet of the cooling tower so that the heat exchanger transfers as much heat as possible to lower the temperature. Therefore the air flow path in the cooling tower should be optimized. Installation of the filler can be used to make the air flow better, thus we investigate the effect of filler on the air flow using CFD method. The pressure and velocity profile in the cooling tower could be acquired by the calculations. The filler made the velocity of the air entering the heat exchanger uniform this was because high flow resistance of the filler suppresses the generation of eddy in the cooling tower. But the total air pressure drop increased about 2 times with filler because the pressure drop by the filler accounted for about 60% of the total pressure drop.

소형 직교류형 냉각탑의 성능 특성에 관한 연구 (Performance Characteristics of Small Sized Cross-flow Cooling Tower)

  • ;김은필;김재돌;전절호;문춘근;윤정인
    • 동력기계공학회지
    • /
    • 제9권2호
    • /
    • pp.93-98
    • /
    • 2005
  • The performance of cooling tower is dependent on the thermal performance of the packings. It's assessed by heat transfer rate and fan power. In this study, new packing was developed for application in compact type cross-flow cooling tower. The packing characteristic curve and the pressure drop curve were obtained by measuring packing characteristic values and pressure drops of small sized filler in comparison to existing mid-large sized filler. The heat transfer characteristics on small sized filler are about 66% higher than existing mid-large sized filler. The pressure drop characteristics on small sized filler are about two times of the pressure drop characteristics on existing mid-large sized filler.

  • PDF

스팀 에젝터에 의한 강제 증발 방식의 냉각 특성에 관한 연구 (Study on Cooling Charcteristics of Forced Evaporation by using Steam Ejector)

  • 손호재;이윤환;김영근;정효민
    • 동력기계공학회지
    • /
    • 제10권2호
    • /
    • pp.41-46
    • /
    • 2006
  • This study shows a water cooling system by using a steam ejector and jet condenser to drop the temperature of the water by about $5^{\circ}C\;from\;25^{\circ}C$ or higher. In this research, to replace the present water cooling system, we focused on a water cooling system by latent heat of evaporation, thus this system needs a vacuum pressure to evaporate the water in enclosed tank. The water cooling effects are depended on the vacuum pressure in the enclosed tank, and the cooling water is generated by latent head of evaporation. As the experimental results, the absolute vacuum pressure obtained was about $5{\sim}8$ mmHg using a steam driven ejector with jet condenser.

  • PDF

건습구식 칼로리미터를 이용한 공기조화기 성능측정상의 계측오차에 대한 실험적 연구 (An Experimental Study on the Measurement Error in the Performance Testing of Air Conditioners Using a Psychrometric Calorimeter)

  • 김봉훈
    • 설비공학논문집
    • /
    • 제14권5호
    • /
    • pp.415-423
    • /
    • 2002
  • An experimental study using a psychrometric calorimeter was conducted to investigate the temperature and pressure mea surement errors permitted for determining cooling capacity of an air conditioner. First, the instrument calibration was made in accordance with the related test methods and guidelines in order to accurately evaluate basic performance (cooling capacity and airs flow rate). Secondly, a parametric study was performed to examine the effect of measurement error involved if temperature and pressure measuring instruments on the cooling capacity calculation. From the results, it was found that the degree of accuracy for both temperature and pressure measurements played an important role on the error occurring in the determination of cooling capacity and needed to be maintained within a certain value to guarantee required accuracy of cooling capacity.

해수냉각시스템 성능에 미치는 냉매배관길이의 영향 (Effect of Refrigerant Pipe Length on Sea Water Cooling System Performance)

  • 윤정인;조영제
    • 수산해양기술연구
    • /
    • 제34권3호
    • /
    • pp.346-351
    • /
    • 1998
  • The purpose of this study is analyzing the performance of sea water cooling system under various refrigerant pipe length. In sea water cooling system, the increase of refrigerant pipe length cause increases of pressure drops. These pressure drops cause fresh gas in liquid pipe and increase specific volume in gas pipe outlet, so sea water cooling system capacity is decreased by decrease of refrigerant mass flow rate. Sea water cooling system capacity in refrigerant pipe length 70m is decreased more than 30% when compared with pipe length 10m and the decrease of the coefficient of performance is nearly 20%.

  • PDF

LPG 액정분사식 대형 버스용 엔진 피스톤의 피로수명 해석과 냉각조건 평가 (Fatigue Life Analysis and Cooling Conditions Evaluation of a Piston for Large LPLi Bus Engines)

  • 최경호;이부윤
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권5호
    • /
    • pp.762-772
    • /
    • 2004
  • Fatigue life of a Piston for large liquid Petroleum liquid injection(LPLi) bus engines is analyzed considering effects of cooling condition parameters : temperature of cooling water, and heat transfer coefficients at oil gallery and bottom surface of piston head. Temperature of the piston is analyzed with varying cooling conditions Stresses of the piston from two load cases of pressure loading. and pressure and thermal loading are analyzed Fatigue life under repeated peak pressure and thermal cycle is analyzed by the strain-life theory. For the two load cases, required loading cycles for engine life are defined, and loading cycles to failure and partial damages are calculated. Based on the resulting accumulated fatigue usage factors, endurance of the piston is evaluated and effects of varying cooling condition Parameters are discussed.

Research of Novel Water Cooling Jacket for Explosion-proof Motor

  • Wang, Yu;He, Huiming;Bai, Baodong
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권1호
    • /
    • pp.67-71
    • /
    • 2014
  • The well tightness of the coal mining water-cooling explosion-proof motor results in difficult heat dissipation, high hydraulic pressure is needed to increase the cooling effect. However, high hydraulic pressure may lead motor shell to deform, which makes it difficult to change the motor and maintain the motor unit. The method of adding keyhole caulk weld spots on the outer cooling water jacket was proposed to solve the problem. Based on the elasticity mechanics equations and the principle of finite element method the stresses and the deformations of the traditional and novel outer cooling water jacket were calculated separately. A hydraulic pressure experiment of the both cooling water jackets was constructed. Obviously, the stress and the deformation of the novel cooling water jacket are lower. The experimental result is consistent with the simulation results. It is effective to reduce the stress and the deformation of the cooling water jacket by adding the keyhole caulk weld spots.

수평관 내에서 이산화탄소 초임계 가스냉각 과정의 열전달 및 압력강하 특성에 관한 실험적 연구 (An Experimental Study on Heat Transfer and Pressure Drop Characteristics during Supercritical Process of Carbon Dioxide in a Horizontal Tube)

  • 최이철;강병하;김석현
    • 설비공학논문집
    • /
    • 제16권5호
    • /
    • pp.414-420
    • /
    • 2004
  • The heat transfer and pressure drop characteristics associated with the gas cooling of the supercritical carbon dioxide in a horizontal tube have been investigated experimentally. This problem is of particular interest in the design of a gas cooler of cooling systems using $CO_2$refrigerant. The test section is consisted of 6 series of 455 mm in length, 4.15 mm ID copper tube, respectively. The effects of the inlet temperature, pressure and mass flow rate on the heat transfer and pressure drop of $CO_2$in a horizontal tube is studied in detail. The heat transfer coefficient of $CO_2$is varied by temperature, inlet pressure, and mass flow rate of $CO_2$. This has maximum value at near the pseudocritical temperature. The pressure drop is changed by inlet pressure and mass flow rate of $CO_2$. The results have been compared with those of previous work. The heat transfer correlation at the supercritical gas cooling process is also suggested.

Experimental study on the consolidation of saturated silty clay subjected to cyclic thermal loading

  • Bai, Bing;Shi, Xiaoying
    • Geomechanics and Engineering
    • /
    • 제12권4호
    • /
    • pp.707-721
    • /
    • 2017
  • The objective of this paper is to experimentally study the consolidation of saturated silty clay subjected to repeated heating-cooling cycles using a modified temperature-controlled triaxial apparatus. Focus is placed on the influence of the water content, confining pressure, and magnitudes and number of thermal loading cycles. The experimental results show that the thermally induced pore pressure increases with increasing water content and magnitude of thermal loading in undrained conditions. After isothermal consolidation at an elevated temperature, the pore pressure continues to decrease and gradually falls below zero during undrained cooling, and the maximum negative pore pressure increases as the water content decreases or the magnitude of thermal loading increases. During isothermal consolidation at ambient temperature after one heating-cooling cycle, the pore pressure begins to rise due to water absorption and finally stabilizes at approximately zero. As the number of thermal loading cycles increases, the thermally induced pore pressure shows a degrading trend, which seems to be more apparent under a higher confining pressure. Overall, the specimens tested show an obvious volume reduction at the completion of a series of heating-cooling cycles, indicating a notable irreversible thermal consolidation deformation.

A study on the working mechanism of internal pressure of super-large cooling towers based on two-way coupling between wind and rain

  • Ke, Shitang;Yu, Wenlin;Ge, Yaojun
    • Structural Engineering and Mechanics
    • /
    • 제70권4호
    • /
    • pp.479-497
    • /
    • 2019
  • In the current code design, the use of a uniform internal pressure coefficient of cooling towers as internal suction cannot reflect the 3D characteristics of flow field inside the tower body with different ventilation rate of shutters. Moreover, extreme weather such as heavy rain also has a direct impact on aerodynamic force on the internal surface and changes the turbulence effect of pulsating wind. In this study, the world's tallest cooling tower under construction, which stands 210m, is taken as the research object. The algorithm for two-way coupling between wind and rain is adopted. Simulation of wind field and raindrops is performed iteratively using continuous phase and discrete phase models, respectively, under the general principles of computational fluid dynamics (CFD). Firstly, the rule of influence of 9 combinations of wind speed and rainfall intensity on the volume of wind-driven rain, additional action force of raindrops and equivalent internal pressure coefficient of the tower body is analyzed. The combination of wind velocity and rainfall intensity that is most unfavorable to the cooling tower in terms of distribution of internal pressure coefficient is identified. On this basis, the wind/rain loads, distribution of aerodynamic force and working mechanism of internal pressures of the cooling tower under the most unfavorable working condition are compared between the four ventilation rates of shutters (0%, 15%, 30% and 100%). The results show that the amount of raindrops captured by the internal surface of the tower decreases as the wind velocity increases, and increases along with the rainfall intensity and ventilation rate of the shutters. The maximum value of rain-induced pressure coefficient is 0.013. The research findings lay the basis for determining the precise values of internal surface loads of cooling tower under extreme weather conditions.