• Title/Summary/Keyword: press release

Search Result 160, Processing Time 0.035 seconds

In-situ stresses ring hole measurement of concrete optimized based on finite element and GBDT algorithm

  • Chen Guo;Zheng Yang;Yanchao Yue;Wenxiao Li;Hantao Wu
    • Computers and Concrete
    • /
    • v.34 no.4
    • /
    • pp.477-487
    • /
    • 2024
  • The in-situ stresses of concrete are an essential index for assessing the safety performance of concrete structures. Conventional methods for pore pressure release often face challenges in selecting drilling ring parameters, uncontrollable stress release, and unstable detection accuracy. In this paper, the parameters affecting the results of the concrete ring hole stress release method are cross-combined, and finite elements are used to simulate the combined parameters and extract the stress release values to establish a training set. The GridSearchCV function is utilized to determine the optimal hyperparameters. The mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2) are used as evaluation indexes to train the gradient boosting decision tree (GBDT) algorithm, and the other three common algorithms are compared. The RMSE of the GBDT algorithm for the test set is 4.499, and the R2 of the GBDT algorithm for the test set is 0.962, which is 9.66% higher than the R2 of the best-performing comparison algorithm. The model generated by the GBDT algorithm can accurately calculate the concrete in-situ stresses based on the drilling ring parameters and the corresponding stress release values and has a high accuracy and generalization ability.

In-vitro elution of cisplatin and fluorouracil from bi-layered biodegradable beads

  • Liu, Kuo-Sheng;Pan, Ko-Ang;Liu, Shih-Jung
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.2
    • /
    • pp.85-96
    • /
    • 2015
  • This study developed biodegradable bi-layered drug-eluting beads and investigated the in-vitro release of fluorouracil and cisplatin from the beads. To manufacture the drug-eluting beads, poly[(d,l)-lactide-co-glycolide] (PLGA) with lactide:glycolide ratios of 50:50 and 75:25 were mixed with fluorouracil or cisplatin. The mixture was compressed and sintered at $55^{\circ}C$ to form bi-layered beads. An elution method was employed to characterize the release characteristic of the pharmaceuticals over a 30-day period at $37^{\circ}C$. The influence of polymer type (i.e., 50:50 or 75:25 PLGA) and layer layout on the release characteristics was investigated. The experiment suggested that biodegradable beads released high concentrations of fluorouracil and cisplatin for more than 30 days. The 75:25 PLGA released the pharmaceuticals at a slower rate than the 50:50 PLGA. In addition, the bi-layered structure reduced the release rate of drugs from the core layer of the beads. By adopting the compression sintering technique, we will be able to manufacture biodegradable beads for long-term drug delivery of various anti-cancer pharmaceuticals.

Fracture analysis of inhomogeneous arch with two longitudinal cracks under non-linear creep

  • Victor I. Rizov;Holm Altenbach
    • Advances in materials Research
    • /
    • v.12 no.1
    • /
    • pp.15-29
    • /
    • 2023
  • In this paper, fracture analysis of a continuously inhomogeneous arch structure with two longitudinal cracks is developed in terms of the time-dependent strain energy release rate. The arch under consideration exhibits non-linear creep behavior. The cross-section of the arch is a rectangle. The material is continuously inhomogeneous along the thickness of the cross-section. The arch is loaded by two bending moments applied at its end sections. The mechanical behavior of the material is described by using a non-linear stress-strain-time relationship. The two longitudinal cracks are located symmetrically with respect to the mid-span of the arch. Due to the symmetry, only half of the arch is considered. Time-dependent solutions to strain energy release rate are obtained by analyzing the balance of the energy. For verification, time-dependent solutions to the strain energy release rate are derived also by considering the time-dependent complementary strain energy. The evolution of the strain energy release rate with the time is analyzed. The effects of material inhomogeneity, locations of the two cracks along the thickness of the arch and the magnitude of the external loading on the time-dependent strain energy release rate are evaluated.

Active components delivery rate from acrylic resin maxillary surgical obturator: Part I

  • Al-Kaabi, Arshad;Hamid, Mohammed A.
    • Advances in materials Research
    • /
    • v.9 no.2
    • /
    • pp.109-114
    • /
    • 2020
  • The purpose of this study was to observe the trend of compounds release from acrylic resin oral prosthesis when used for drug delivery as well as a restoration. In this study, 10 specimens of heat-cured polymethylmethacrylate material were prepared and loaded with methylene blue biological stain. The specimens were then submerged in vials with 5 ml distilled water for 24 hours. The extraction procedure continued for 4 days, each day the specimens were immersed in another 5 ml distilled water vial. All extracted solutions were analyzed by visible light spectroscopy for absorbance comparison. The statistical results showed that the absorbance values were significantly different in the first day of extraction than the following days. However, there was no statistical difference among the 2nd, 3rd and 4th days of extraction. Biological stain loading to acrylic resin at the mixing stage, and then after extraction in distilled water, showed a burst release during the first day followed by a constant release during the following few days.

Energy release rate for kinking crack using mixed finite element

  • Salah, Bouziane;Hamoudi, Bouzerd;Noureddine, Boulares;Mohamed, Guenfoud
    • Structural Engineering and Mechanics
    • /
    • v.50 no.5
    • /
    • pp.665-677
    • /
    • 2014
  • A numerical method, using a special mixed finite element associated with the virtual crack extension technique, has been developed to evaluate the energy release rate for kinking cracks. The element is two dimensional 7-node mixed finite element with 5 displacement nodes and 2 stress nodes. The mixed finite element ensures the continuity of stress and displacement vectors on the coherent part and the free edge effect. This element has been formulated starting from a parent element in a natural plane with the aim to model different types of cracks with various orientations. Example problems with kinking cracks in a homogeneous material and bimaterial are presented to assess the computational accuracies.

Interlaminar stresses and delamination of composite laminates under extension and bending

  • Nguyen, Tien Duong;Nguyen, Dang Hung
    • Structural Engineering and Mechanics
    • /
    • v.25 no.6
    • /
    • pp.733-751
    • /
    • 2007
  • The metis element method (Hung 1978) has been applied to analyse free edge interlaminar stresses and delamination in composite laminates, which are subjected to extension and bending. The paper recalls Lekhnitskii's solution for generalized plane strain state of composite laminate and Wang's singular solution for determination of stress singularity order and of eigen coefficients $C_m$ for delamination problem. Then the formulae of metis displacement finite element in two-dimensional problem are established. Computation of the stress intensity factors and the energy release rates are presented in details. The energy release rate, G, is computed by Irwin's virtual crack technique using metis elements. Finally, results of interlaminar stresses, the three stress intensity factors and the energy release rates for delamination crack in composite laminates under extension and bending are illustrated and compared with the literature to demonstrate the efficiency of the present method.

On the analysis of delamination in multilayered inhomogeneous rods under torsion

  • Rizov, Victor I.
    • Coupled systems mechanics
    • /
    • v.8 no.5
    • /
    • pp.377-391
    • /
    • 2019
  • The present paper is focused on analyzing the delamination of inhomogeneous multilayered rods of circular cross-section loaded in torsion. The rods are made of concentric longitudinal layers of individual thickness and material properties. A delamination crack is located arbitrary between layers. Thus, the internal and external crack arms have circular and ring-shaped cross-sections, respectively. The layers exhibit continuous material inhomogeneity in radial direction. Besides, the material has non-linear elastic behavior. The delamination is analyzed in terms of the strain energy release rate. General solution to the strain energy release rate is derived by considering the energy balance. The solution is applied to analyze the delamination of cantilever rod. For verification, the strain energy release rate is derived also by considering the complementary strain energy.

Delamination analysis of multilayered beams with non-linear stress relaxation behavior

  • Victor I., Rizov
    • Coupled systems mechanics
    • /
    • v.11 no.6
    • /
    • pp.543-556
    • /
    • 2022
  • Delamination of multilayered inhomogeneous beam that exhibits non-linear relaxation behavior is analyzed in the present paper. The layers are inhomogeneous in the thickness direction. The dealamination crack is located symmetrically with respect to the mid-span. The relaxation is treated by applying a non-linear stress-straintime constitutive relation. The material properties which are involved in the constitutive relation are distributed continuously along the thickness direction of the layer. The delamination is analyzed by applying the J-integral approach. A time-dependent solution to the J-integral that accounts for the non-linear relaxation behavior is derived. The delamination is studied also in terms of the time-dependent strain energy release rate. The balance of the energy is analyzed in order to obtain a non-linear time-dependent solution to the strain energy release rate. The fact that the strain energy release rate is identical with the J-integral value proves the correctness of the non-linear solutions derived in the present paper. The variation of the J-integral value with time due to the non-linear relaxation behavior is evaluated by applying the solution derived.

Multilayered inhomogeneous beam under prescribed angle of twist and displacements: A delamination analysis

  • Victor I. Rizov
    • Coupled systems mechanics
    • /
    • v.13 no.2
    • /
    • pp.153-170
    • /
    • 2024
  • The problem considered in this theoretical paper is the delamination of a multilayered inhomogeneous beam structure that has viscoelastic behaviour under angle of twist, horizontal and vertical displacements which vary smoothly with time according to prescribed laws. The cross-section of the beam is a rectangle. The layers are made of different materials which are smoothly inhomogeneous along the length of the beam. The beam under consideration represents statically undetermined structure since it is clamped in its two ends. The problem of the strain energy release rate is solved. For this purpose, the strain energy stored in the beam structure is analyzed. In order to verify the solution obtained, the strain energy release rate is found also analyzing the time-dependent compliances of the beam under prescribed angle of twist and displacements. A parametric investigation is carried-out by applying the solution obtained. Special attention is paid to the effect of the parameters which control the variation of the angle of twist and the displacements with time on the strain energy release rate.

Why is Science Reporting Easy to Lead to Failure ?: ANT Analysis of Reporting on ETRI Scientist Hyun-Tak Kim (과학 보도는 왜 실패하기 쉬운가: ETRI 김현탁 박사팀 보도에 대한 ANT 분석)

  • Lee, Choong-Hwan
    • Journal of Science and Technology Studies
    • /
    • v.12 no.1
    • /
    • pp.145-183
    • /
    • 2012
  • Science reporting is easier to lead to failure than other news reporting because it needs higher professionalism. According to Actor-Network Theory(ANT), not only research results(artifacts) of scientists but also science articles are hybrid networks. Namely, they are connected by human actors(scientist, reporter, etc.) and nonhuman actors(press releases etc.). When the process of science reporting is examined on the view of ANT, it is the process that scientists' results translate the media via press releases as intermediaries and expand their network to the public. This study aims at making an ANT analysis of how research results of Electronics and Telecommunications Research Institute(ETRI) scientist Hyun-Tak Kim were reported by lots of media, focusing on the rhetoric of ETRI's press release. It can reveal the reason for the science reporting's failure and hint at the better science journalism.

  • PDF