• Title/Summary/Keyword: press operation

Search Result 468, Processing Time 0.023 seconds

Removal study of As (V), Pb (II), and Cd (II) metal ions from aqueous solution by emulsion liquid membrane

  • Dohare, Rajeev K.;Agarwal, Vishal;Choudhary, Naresh K.;Imdad, Sameer;Singh, Kailash;Agarwal, Madhu
    • Membrane and Water Treatment
    • /
    • v.13 no.4
    • /
    • pp.201-208
    • /
    • 2022
  • Emulsion Liquid Membrane (ELM) is a prominent technique for the separation of heavy metal ions from wastewater due to the fast extraction and is a single-stage operation of stripping-extraction. The selection of the components (Surfactant and Carrier) of ELM is a very significant step for its preparation. In the ELM technique, the primary water- in-oil (W/O) emulsion is emulsified in water to produce water-in-oil-in-water (W/O/W) emulsion. The water in oil emulsion was prepared by mixing the membrane phase and internal phase. To prepare the membrane phase, the extractant D2EHPA (di-2-ethylhexylphosphoric acid) was used as a mobile carrier, Span-80 as a surfactant, and Paraffin as a diluent. Moreover, the internal (receiving) phase was prepared by dissolving sulphuric acid in water. Di-(2- ethylhexyl) phosphoric acid such as surfactant concentration, carrier concentration, sulphuric acid concentration in the receiving (internal) phase, agitation time (emulsion phase and feed phase), the volume ratio of the membrane phase to the receiving phase, the volume ratio of the external feed phase to the primary water-in-oil emulsion and pH of feed were studied on the percentage extraction of metal ions at 20℃. The results show that it is possible to remove 78% for As(V), 98% for Cd(II), and 99% for Pb(II). Emulsion Liquid Membrane (ELM) is a well-known technique for separating heavy metal ions from wastewater due to the fast extraction and is a single-stage operation of stripping-extraction. The selection of ELM components (Surfactant and Carrier) is a very significant step in its preparation. In the ELM technique, the primary water-in-oil (W/O) emulsion is emulsified to produce water-in-oil-in-water (W/O/W) emulsion. The water in the oil emulsion was prepared by mixing the membrane and internal phases. The extractant D2EHPA (di-2-ethylhexylphosphoric acid) was used as a mobile carrier, Span-80 as a surfactant, and Paraffin as a diluent. Moreover, the internal (receiving) phase was prepared by dissolving sulphuric acid in water. Di-(2-ethylhexyl) phosphoric acid such as surfactant concentration, carrier concentration, sulphuric acid concentration in the receiving (internal) phase, agitation time (emulsion phase and feed phase), the volume ratio of the membrane phase to the receiving phase, the volume ratio of the external feed phase to the primary water-in-oil emulsion and pH of feed were studied on the percentage extraction of metal ions at 20℃. The results show that it is possible to remove 78% for As(V), 98% for Cd(II), and 99% for Pb(II).

Dynamic analysis of a coupled steel-concrete composite box girder bridge-train system considering shear lag, constrained torsion, distortion and biaxial slip

  • Li Zhu;Ray Kai-Leung Su;Wei Liu;Tian-Nan Han;Chao Chen
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.207-233
    • /
    • 2023
  • Steel-concrete composite box girder bridges are widely used in the construction of highway and railway bridges both domestically and abroad due to their advantages of being light weight and having a large spanning ability and very large torsional rigidity. Composite box girder bridges exhibit the effects of shear lag, restrained torsion, distortion and interface bidirectional slip under various loads during operation. As one of the most commonly used calculation tools in bridge engineering analysis, one-dimensional models offer the advantages of high calculation efficiency and strong stability. Currently, research on the one-dimensional model of composite beams mainly focuses on simulating interface longitudinal slip and the shear lag effect. There are relatively few studies on the one-dimensional model which can consider the effects of restrained torsion, distortion and interface transverse slip. Additionally, there are few studies on vehicle-bridge integrated systems where a one-dimensional model is used as a tool that only considers the calculations of natural frequency, mode and moving load conditions to study the dynamic response of composite beams. Some scholars have established a dynamic analysis model of a coupled composite beam bridge-train system, but where the composite beam is only simulated using a Euler beam or Timoshenko beam. As a result, it is impossible to comprehensively consider multiple complex force effects, such as shear lag, restrained torsion, distortion and interface bidirectional slip of composite beams. In this paper, a 27 DOF vehicle rigid body model is used to simulate train operation. A two-node 26 DOF finite beam element with composed box beams considering the effects of shear lag, restrained torsion, distortion and interface bidirectional slip is proposed. The dynamic analysis model of the coupled composite box girder bridge-train system is constructed based on the wheel-rail contact relationship of vertical close-fitting and lateral linear creeping slip. Furthermore, the accuracy of the dynamic analysis model is verified via the measured dynamic response data of a practical composite box girder bridge. Finally, the dynamic analysis model is applied in order to study the influence of various mechanical effects on the dynamic performance of the vehicle-bridge system.

Study on the Category of Safety Models for the Urban Railway (도시철도 안전성 모델의 유형 분석)

  • Seo, Yong-Jun;Kook, Kwang-Ho;Lee, Jeong-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.4
    • /
    • pp.402-407
    • /
    • 2012
  • Since reports on trip delays or incidents often appear as accident articles on the press, the social criticisms and concerns on the safety of the urban railway are increasing. Therefore, a railway authority sometimes adopts an abstract safety goal like "let's build the urban railway to a masterpiece level" or "let's obtain an aeronautic safety level" to make citizens relieved and to alert involved persons. However with a vague goal, it is almost impossible to make an implementation plan systematic which helps the authority academically verify and validate if the goal is achieved or not. In this paper, the features of the railway safety are described and the safety models for securing the safety of the urban railway are surveyed and categorized. Based on the comparisons among the features and limitations of the models, we identify a more practical model which can be applied to the urban railway more effectively.

Surface modification of polypropylene membrane to improve antifouling characteristics in a submerged membrane-bioreactor: Ar plasma treatment

  • Zhou, Jin;Li, Wei;Gu, Jia-Shan;Yu, Hai-Yin
    • Membrane and Water Treatment
    • /
    • v.1 no.1
    • /
    • pp.83-92
    • /
    • 2010
  • To improve the antifouling characteristics of polypropylene hollow fiber microporous membranes in a submerged membrane-bioreactor for wastewater treatment, the surface-modification was conducted by Ar plasma treatment. Surface hydrophilicity was assessed by water contact angle measurements. The advancing and receding water contact angles reduced after the surface modification, and hysteresis between the advancing and receding water contact angles was enlarged after Ar plasma treatment due to the increased surface roughness after surface plasma treatment. After continuous operation in a submerged membrane-bioreactor for about 55 h, the flux recovery after water cleaning and the flux ratio after fouling were improved by 20.0 and 143.0%, while the reduction of flux was reduced by 28.6% for the surface modified membrane after 1 min Ar plasma treatment, compared to those of the unmodified membrane. Morphological observations showed that the mean membrane pore size after Ar plasma treatment reduced as a result of the deposition of the etched species; after it was used in the submerged membrane-bioreactor, the further decline of the mean membrane pore size was caused by the deposition of foulants. X-ray photoelectron spectroscopy and infrared spectroscopy confirmed that proteins and polysaccharide-like substances were the main foulants in the precipitate.

Experimental research on the evolution characteristics of displacement and stress in the formation of reverse faults

  • Chen, Shao J.;Xia, Zhi G.;Yin, Da W.;Du, Zhao W.
    • Geomechanics and Engineering
    • /
    • v.23 no.2
    • /
    • pp.127-137
    • /
    • 2020
  • To study the reverse fault formation process and the stress evolution feature, a simulation test system of reverse fault formation is developed based on the analysis of reverse fault formation mechanism. The system mainly consists of simulation laboratory module, operation console and horizontal loading control system, and data monitoring system. It can represent the fault formation process, induce fault crack initiation and simulate faults of different throws. Simulation tests on reverse fault formation process are conducted by using the simulation test system: horizontal loading is added to one side of the model. the bottom rock layer cracks under the effect of the induction device. The crack dip angle is about 29°. A reverse fault is formed with the expansion of the crack dip angle towards the upper right along the fracture surface and the slippage of the hanging wall over the foot wall. Its formation process unfolds five stages: compressive deformation of rock, local crack initiation, reverse fault penetration, slippage of the hanging wall over the foot wall and compaction of fault plane. There is residual structural stress inside rock after fault formation. The study methods and results have guiding and referential significance for further study on reverse fault formation mechanism and rock stress evolution.

Experimental study on seismic behavior of two-storey modular structure

  • Liu, Yang;Chen, Zhihua;Liu, Jiadi;Zhong, Xu
    • Steel and Composite Structures
    • /
    • v.37 no.3
    • /
    • pp.273-289
    • /
    • 2020
  • Due to the unique construction method of modular steel buildings (MSBs) with units prefabricated fully off the site and assembled quickly on the site, the inter-module connection for easy operation and overall performance of the system were key issues. However, it was a lack of relevant research on the system-level performance of MSBs. This study investigated the seismic performance of two-storey modular steel structure with a proposed vertical rotary inter-module connection. Three full-scale quasi-static tests, with and without corrugated steel plate and its combination, were carried out to evaluate and compare their seismic behaviour. The hysteretic performance, skeleton curves, ductile performance, stiffness degradation, energy dissipation capacity, and deformation pattern were clarified. The results showed that good ductility and plastic deformation ability of such modular steel structures. Two lateral-force resistance mechanisms with different layout combinations were also discussed in detail. The corrugated steel plate could significantly improve the lateral stiffness and bearing capacity of the modular steel structure. The cooperative working mechanism of modules and inter-module connections was further analyzed. When the lateral stiffness of upper and lower modular structures was close, limited bending moment transfer may be considered for the inter-module connection. While a large lateral stiffness difference existed initially between the upper and lower structures, an obvious gap occurred at the inter-module connection, and this gap may significantly influence the bending moments transferred by the inter-module connections. Meanwhile, several design recommendations of inter-module connections were also given for the application of MSBs.

Evaluation of structural operativity of two strategic buildings through Seismic Model

  • Foti, Dora;Giannoccaro, Nicola Ivan;Greco, Pierluigi;Lerna, Michela;Paolicelli, Raffaele;Vacca, Vitantonio
    • Earthquakes and Structures
    • /
    • v.19 no.1
    • /
    • pp.45-57
    • /
    • 2020
  • This paper presents the experimental application of a new method for seismic vulnerability assessment of buildings recently introduced in literature, the SMAV (Seismic Model Ambient Vibration) methodology with reference to their operational limit state. The importance of this kind of evaluation arises from the civil protection necessity that some buildings, considered strategic for seismic emergency management, should retain their functionality also after a destructive earthquake. They do not suffer such damage as to compromise the operation within a framework of assessment of the overall capacity of the urban system. To this end, for the characterization of their operational vulnerability, a Structural Operational Index (IOPS) has been considered. In particular, the dynamic environmental vibrations of the two considered strategic buildings, the fire station and the town hall building of a small town in the South of Italy, have been monitored by positioning accelerometers in well-defined points. These measurements were processed through modern Operational Modal Analysis techniques (OMA) in order to identify natural frequencies and modal shapes. Once these parameters have been determined, the structural operational efficiency index of the buildings has been determined evaluating the seismic vulnerability of the strategic structures analyzed. his study aimed to develop a model to accurately predict the acceleration of structural systems during an earthquake.

Operation load estimation of chain-like structures using fiber optic strain sensors

  • Derkevorkian, Armen;Pena, Francisco;Masri, Sami F.;Richards, W. Lance
    • Smart Structures and Systems
    • /
    • v.20 no.3
    • /
    • pp.385-396
    • /
    • 2017
  • The recent advancements in sensing technologies allow us to record measurements from target structures at multiple locations and with relatively high spatial resolution. Such measurements can be used to develop data-driven methodologies for condition assessment, control, and health monitoring of target structures. One of the state-of-the-art technologies, Fiber Optic Strain Sensors (FOSS), is developed at NASA Armstrong Flight Research Center, and is based on Fiber Bragg Grating (FBG) sensors. These strain sensors are accurate, lightweight, and can provide almost continuous strain-field measurements along the length of the fiber. The strain measurements can then be used for real-time shape-sensing and operational load-estimation of complex structural systems. While several works have demonstrated the successful implementation of FOSS on large-scale real-life aerospace structures (i.e., airplane wings), there is paucity of studies in the literature that have investigated the potential of extending the application of FOSS into civil structures (e.g., tall buildings, bridges, etc.). This work assesses the feasibility of using FOSS to predict operational loads (e.g., wind loads) on chain-like structures. A thorough investigation is performed using analytical, computational, and experimental models of a 4-story steel building test specimen, developed at the University of Southern California. This study provides guidelines on the implementation of the FOSS technology on building-like structures, addresses the associated technical challenges, and suggests potential modifications to a load-estimation algorithm, to achieve a robust methodology for predicting operational loads using strain-field measurements.

LLE and SLM studies for Pd(II) separation using a thiodiglycolamide-based ligand

  • Kumbhaj, Shweta;Prabhu, Vandana;Patwardhan, Anand V.
    • Membrane and Water Treatment
    • /
    • v.9 no.6
    • /
    • pp.463-471
    • /
    • 2018
  • The present paper deals with the liquid-liquid extraction and flat sheet supported liquid membrane studies of Pd(II) separation from nitric acid medium using a novel synthesized ligand, namely, N,N,N',N'-tetraethyl-2,2-thiodiethanthiodiglycolamide (TETEDGA). The effect of various diluents and stripping reagents on the extraction of Pd(II) was studied. The liquid-liquid extraction studies showed complete extraction of Pd(II) in ~ 5 min. The influence of nitric acid and TETEDGA concentration on the distribution of Pd(II) has been investigated. The increase in nitric acid concentration resulted in increase in extraction of Pd(II). Stoichiometry of the extracted species was found to be $Pd(NO_3)_2{\cdot}TETEDGA$ by slope analysis method. Extraction studies with SSCD solution showed negligible uptake of Pt, Cr, Ni, and Fe, thus showing very high selectivity and extractability of TETEDGA for Pd(II). The flat sheet supported liquid membrane studies showed quantitative transport of Pd(II), ~99%, from the feed ($3M\;HNO_3$) to the strippant (0.02 M thiourea diluted in $0.4M\;HNO_3$) using 0.01 M TETEDGA as a carrier diluted in n-dodecane. Extraction time was ~160 min. Parameters such as feed acidity, TETEDGA concentration in membrane phase, membrane porosity etc. were optimized to achieve maximum transport rate. Permeability coefficient value of $2.66{\times}10^{-3}cm/s$ was observed using TETEDGA (0.01 M) as carrier, at 3 M, $HNO_3$ feed acidity across $0.2{\mu}m$ PTFE as membrane. The membrane was found to be stable over five runs of the operation.

Hydro-forming Process Development of Automotive AA6061 Rear Sub-frame Side Member by Computer Aided Engineering (CAE) (컴퓨터 시뮬레이션(CAE)을 이용한 자동차용 AA6061 리어 서브-프레임 사이드멤버의 하이드로-포밍 공정 개발)

  • Kim, Kee-Joo;Kim, Jae-Hyun;Choi, Byung-Ik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.45-49
    • /
    • 2010
  • The automotive industry has shown a growing interest in tube hydroforming during the past years. The advantages of hydroforming (less thinning, a more efficient manufacturing process, etc.) can, for instance, be combined with the high strength of extra high strength steels, which are usually less formable, to produce structural automotive components which exhibit lower weight and improved service performance. Design and production of tubular components require knowledge about tube material and forming behavior during hydroforming and how the hydroforming operation itself should be controlled. These issues are studied analytically in the present paper. In this study, the whole process of rear sub-frame parts development by tube hydroforming using AA6061 material is presented. At the part design stage, it requires feasibility study and process design aided by CAE (Computer Aided Engineering) to confirm hydroformability in details. Effects of parameters such as internal pressure, axial feeding and geometry shape in automotive rear sub-frame by hydroforming process were carefully investigated. Overall possibility of hydroformable rear sub-frame parts could be examined by cross sectional analyses. Moreover, it is essential to ensure the formability of tube material on every forming step such as pre-bending and hydroforming. In addition, all the components of prototyping tool are designed and interference with press is examined from the point of geometry and thinning.