• Title/Summary/Keyword: prepreg

Search Result 228, Processing Time 0.021 seconds

Stacking Sequence Effects on Indentation Damage Behaviors of Fiber Metal Laminate (섬유의 적층 각도에 따른 섬유 금속 적층판의 압입 손상 거동)

  • Nam, H.W.;Kim, Y.H.;Jung, S.W.;Han, K.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.204-209
    • /
    • 2001
  • In this research, the effects of fiber stacking sequence on damage behaviors of FML(Fiber Metal Laminates) subject to indentation loading. SOP (Singly Oriented Ply) FML and angle ply FML were fabricated to study fiber orientation effects and angle ply effects. FML were fabricated by using 1050 aluminum laminate and carbon/epoxy prepreg. To increase adhesive bonding strength, Al laminate was etched using FPL methods. The static indentation test were conducted by using UTM(5ton, Shimadzu) under the 2side clamped conditions. During the tests, load and displacement curve and crack initiation and propagation behaviors were investigated. As fiber orientation angle increases, the crack initiation load of SOP FML increases because the stiffness induced by fiber orientation is increased. The penetration load of SOP FML is influenced by the deformation tendency and boundary conditions. However, the macro-crack of angle ply FML was initiated by fiber breakage of lower ply because angle plies in Angle ply FML prevents the crack growth and consolidation. The Angle ply FML has a critical cross-angle which prevent crack growth and consolidation. Damage behavior of Angle ply FML is changed around the critical cross-angle.

  • PDF

Energy Absorption Characteristics of Composite Laminated Structural Member According to the Interface Number (복합적층 구조부재의 계면수 변화에 따른 에너지흡수특성)

  • Hwang, Woo-Chae;Lee, Kil-Sung;Cha, Cheon-Seok;Jung, Jong-An;Han, Gil-Young;Yang, In-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • Ultimate goals in vehicle design can be summarized as environment-friendliness and safety. Along with these requirements, the importance of natural environment conservation has been focused lately. Therefore, reduced emission from vehicle and improved efficiency has become the top priority projects throughout the world. CFRP(Carbon Fiber Reinforced Plastics) of the advanced composite materials as structure materials for vehicles, has a widely application in lightweight structural materials of air planes, ships and automobiles because of high strength and stiffness. This study is to investigate the energy absorption characteristics of CFRP hat-shaped section members under the axial impact collapse test. The CFRP hat-shaped section members which manufactured from unidirectional prepreg sheets were made of 8plies. The axial impact collapse tests were carried out for each section members. The collapse mode and energy absorption characteristics were analyzed for CFRP hat-shaped section member according to the interface numbers(2, 3, 4, 6 and 7).

Development of Multi-Degree of Freedom Carbon Fiber Plate Force/Torque Sensor (다자유도 탄소섬유판 힘/토크 센서 개발)

  • Lee, Dong-Hyeok;Kim, Min-Gyu;Cho, Nahm-Gyoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.2
    • /
    • pp.170-177
    • /
    • 2012
  • A force/torque sensor using carbon fiber plate was designed and developed to make the sensor be able to measure a wide range of multi degree of force and torque. Using carbon fiber plate of 0.3 mm thickness, the sensor was designed and developed, which has a ${\mu}N$ level order of resolution and about 0.01 N ~ 390 N of wide measurement range. The elastic deformation part has a tripod plate structure and strain gauges are attached on the part to detect the force/torque. The coefficient of determination for the sensor is over 0.955 by the calibration experiment so that the linearity of the sensor is confirmed to be good. Also, experiments on applying 0.005 ~ 40 kg (0.05 ~ 390 N) to each axis were implemented and the sensor is proved to be safe under a high load. Finally, to verify the function calculating the direction of load vector, the directions of various load vectors which have the same magnitude but different directions and the directions of the calculated load vectors are compared and analyzed to accord well.

The Behavior of Tensile Fracture for Al/CFRP Hybrid Composite Material (Al/CFRP 하이브리드 복합재료의 인장파괴거동)

  • Kang, Ji-Woong;Kwon, Oh-Heon;Ryu, Jin-Gyu
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.23-29
    • /
    • 2009
  • The hybrid composite materials are recently used in many field as an advanced material due to their high resistance to fracture. However, hybrid composite materials have several problems, especially delamination, compared with homogeneous materials such as an aluminum alloy, etc. In this study, we carried out the tensile test to study the tension failure appearances and tensile ultimate strength of CFRP/Al/CFRP hybrid composite materials. The CFRP material used in the experiment is a commercial material known as CU175NS in unidirectional carbon prepreg. Also Al/CFRP/Al hybrid composites with three kind length of a single edge crack were investigated for the relationship between an aluminium volume fraction and a crack length. The crack length was measured by a traveling microscope under a universal dynamic tester. Futhermore the stress intensity factor behavior was examined according to a volume fraction and an initial crack length ratio to a width.

A Study on the Processing Technique to form Various Dimples on the Surface of Composite Parts (복합재료 부품 표면에 다양한 딤플을 형성하는 성형 방법)

  • Joe, C.R.;Byun, Gill-Jae
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.42-47
    • /
    • 2013
  • In this study, an economical and effective processing technique to form multiple dimples on the surface of a composite part, which are known to be useful to improve aerodynamic performance and heat dissipation. Forming dimples on the surface using molds is an expensive processing because forming multiple tiny positive spheres on the surface of the mold requires much time and effort. In this study, plates with multiple round holes are utilized as a core to form dimples on the carbon/epoxy composite skin covering the core. A vacuum bagging process is used to apply pressure on the surface while curing. Composite parts which have multiple dimples on the surface can be utilized in the field which needs high aerodynamic performance and heat dissipation ability such as high speed sports car bodies.

A Study on the Analysis of causes & minimizing of Defects at Composite Materials Sandwich Structure reinforced with Honeycomb core in Autoclave Processing (하니콤 코어로 보강된 복합재료 샌드위치 구조물의 오토클레이브 성형시 발생되는 결함 원인 분석과 그 최소화 방안)

  • 권순철;양철문;최병근;이세원;한중원;김윤해
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.21-29
    • /
    • 2000
  • The Purpose of this paper is to determine the effect of the autoclave inner pressure rate, heat-up rate, tool round angle, Thickness of core, height of joggle on defects, and to minimize the defects of aircraft sandwich structure reinforced with honeycomb core occurred in autoclave processing. The results showed that the geometry of aircraft sandwich structure and tool such as tool round angle, Thickness of core, height of joggle, and the autoclave cure conditions such as inner pressure rate, heat up rate strongly affected the core movement, core wrinkle, bridge phenomenon of prepreg and depression of core that occurred in autoclave processing.

  • PDF

Impact Collapse Behavior of Hybrid Circular Thin-walled Member by Stacking Condition (적층조건에 따른 혼성 원형 박육부재의 충격압궤거동)

  • Lee, Kil-Sung;Park, Eu-Ddeum;Yang, In-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.235-240
    • /
    • 2010
  • The recent trend of vehicle design aims at crash safety and environmentally-friendly aspect. For the crash safety aspect, energy absorbing members should be absorbed with collision energy sufficiently. But vehicle structure must be light weight for the environmentally-friendly aspect, in order to improve fuel efficiency and to reduce tail gas emission. Therefore, the light weight of vehicle must be achieved in a status of securing safety of crash. An aluminum or CFRP (Carbon Fiber Reinforced Plastics) is representative one among the light-weight materials. In this study, impact collapse behavior of circular hybrid thin-walled member is evaluated. The hybrid members are manufactured by wrapping CFRP prepreg sheets outside the aluminum circular members in the autoclave. Because the CFRP is an anisotropic material whose mechanical properties change with its stacking condition, special attention is given to the effects of the stacking condition on the collapse behavior evaluation of the hybrid thin-walled member. Collapse mode and energy absorption capability of the hybrid thin-walled member are analyzed with change of the fiber orientation angle and interface number.

Analysis of Anisotropic Characteristic in Fiber Reinforced Polymer for the Knee Brace Using the Eddy Current Inspection (와전류 탐상기법을 이용한 무릎보조기용 섬유강화 폴리머의 이방특성 분석)

  • Kim, Cheol-Woong;Park, Cheon-Woong;Shin, Yong-Hoon;Seo, Hae-Young;Lee, Ho-Sang
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1533-1538
    • /
    • 2008
  • The development of new material systems like Carbon Fiber Reinforced Polymer (CFRP) places ever higher demands on the techniques for non-destructive material characterisation. Image-producing eddy current methods also need to satisfy these demands. Eddy-current imaging of FRP is based on the anisotropic electrical properties of the material investigated. Significant differences in conductivity between carbon fibres, polymer matrix and integrated functional components can be found. The availability of high-resolution sensors enables access to the local distribution of the electromagnetic properties. The static and dynamic procedures for isolating influential characteristics, already in use in eddy-current technology, can now be supplemented by topographical images. The precondition for a successful implementation of the eddy-current procedure is a deeper understanding of the image-generating process which allows correct interpretation of the images obtained.

  • PDF

Inverse Estimation of Thermal Properties for APC-2 Composite (역열전도 기법을 이요한 복잡재료의 열물성치의 산정)

  • Jeong, Beop-Seong;Kim, Seon-Gyeong;Kim, Hui-Jun;Lee, U-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.673-679
    • /
    • 2001
  • The objective of this work is to estimate the temperature dependent thermal properties of the APC-2 composite using a inverse parameter estimation technique. The present inverse method features the estimation of the thermal conductivity and the volumetric heat capacity, which are dependent on the temperature inside the composite. Furthermore, the thermal conductivity is directionally dependent because of the aniosotropy of the composite. An on-line temperature measurement system with a suitable method of heating is built. A composite slab is fabricated using thermoplastic prepreg for the investigation. The corresponding computer code for evaluating the thermal properties inversely using the temperature reading transmitted from the measurement system is developed. The parameterized form is used for the rapid and stable estimation. The modified Newtons method is adopted for the solution technique of the inverse analysis. The estimated results are compared with the measured data from a previous study for the verification.

The Influence of Cyclic-bending Moment on the Delamination Zone and the Fatigue Crack Propagation in A15052/AFRP Laminates (반복-굽힘 모멘트가 A15052/AFRP 적층재의 층간분리 영역과 피로균열진전에 미치는 영향)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.231-237
    • /
    • 2000
  • A15052/AFRP laminates were developed principally to obtain a material with good fatigue strength, in which possible cracks would grow very slowly. Weight savings of more than 30% should be attainable in practice. Also, the crack bridging fibers could still was carry a significant part of the load over the crack, thus the COD and stress intensity factor was reduced at the crack tip. A15052/ AFRP laminates consists of three thin sheets of 5052-H34 aluminum alloy and two layers of [0] unidirectional aramid fiber prepreg. The cyclic-bending moment test was investigated based on applying the five kinds of bending moments. The size of the delamination zone produced between 5052-H34 aluminum alloy sheets and fiber-adhesive layers was measured from ultrasonic C-scan pictures taken around the fatigue crack. In addition, the relationship between the cyclic-bending moment and the delamination zone size was studied and the effect of fiber bridging mechanism was also considered.

  • PDF