• Title/Summary/Keyword: preloading jack

Search Result 6, Processing Time 0.02 seconds

Effects of Strut Preloading on the Restraining of Adjacent Ground Displacement at Braced Excavations (버팀 굴착시 버팀대 선행하중의 인접지반 변위 억제 효과)

  • 백규호;조현태
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.31-40
    • /
    • 1999
  • The bracing system using screw jack is not effective for the restraining of adjacent ground displacement. since the screw jack dose not induce sufficient preloading on struts. In order to protect excessive displacement of adjacent ground at braced excavation, new preloading jack was developed in the country. In this paper, the new preloading jack and the measurement results of the lateral displacement of braced wall at three deep excavation sites in Seoul city are introduced. The measurement results showed that the maximum displacements of braced wall are smaller than 0.15% of excavation depth, therefore the wall displacements can be minimized by preloading which is acted on bracing. If the bracing system with new preloading jack is used in braced excavation, it is effective for reducing the cost and period of construction.

  • PDF

A novel preloading method for foundation underpinning for the remodeling of an existing building

  • Wang, Chengcan;Han, Jin-Tae;Kim, Seokjung;Jang, Young-Eun
    • Geomechanics and Engineering
    • /
    • v.24 no.1
    • /
    • pp.29-42
    • /
    • 2021
  • The utilization of buildings can be improved by extending them vertically. However, the added load of the extension might require building foundations to be underpinned; otherwise, the loads on the foundations might exceed their bearing capacity. In this study, a preloading method was presented aiming at transferring partial loads from existing piles to underpinning piles. A pneumatic-type model preloading device was developed and used to carry out centrifuge experiments to evaluate the load-displacement behavior of piles, the pile-soil interaction during preloading, and the additional loading caused by vertical extension. The results showed that the preloading devices effectively transfer load from existing piles to underpinning piles. In the additional loading test of group piles, the load-sharing ratio of a pile increased with its stiffness. The load-sharing ratio of a preloaded micropile was less than that of a non-preloaded micropile as a result of the reduction in axial stiffness caused by preloading before additional loading. Therefore, a slight reduction of the load-sharing capacity of an underpinning pile should be considered if the preloading method is applied. Further, two full scale preloading devices was developed. The devices preload underpinning piles and thereby produce reaction forces on a reaction frame to jack existing piles upward, thus transferring load from the existing piles to the underpinning piles. Specifically, screw-type and hydraulic-jack type devices were developed for the practical application of foundation underpinning during vertical extension, and their operability and load transfer effect verified via full-scale structural experiments.

가설흙막이의 버팀대 선행하중량과 흙막이 벽체 변형등에 대한 분석

  • Kim, Hak-Cheong;Jeong, Gwang-Ryeol
    • 기술발표회
    • /
    • s.2006
    • /
    • pp.35-44
    • /
    • 2006
  • Supporting method of a Temporary retaining wall for underground excavation project are adopted by systems of strut, anchor, nail, raker, etc. Strut system and Raker system of these methods are mostly used preloading jack to minimize deformations of retaining wall. We determinate efficient preloading to analysis these strut-preloadings, deformations of retaining wall, axial forces, and etc.. This study is analysed that preloading applied 0%, 10%, 20%, 30%, ...., 100% for strut and raker installed by CIP temporary retaining wall. This study results that adequate preloadings were determined to analysis correlations of preloading, deformations of wall, maximum bending moment, axial force of strut, and displacement of surrounding.

  • PDF

Comparison of Analysis Methods for Designed Spudcan Bearing Capacity and Penetration Behavior for Southwest Sea Soil (서남해안 해저 토질을 대상으로 설계한 스퍼드캔의 지지력 및 침투 거동 분석을 위한 해석방법 비교)

  • Jin, Haibin;Jang, Beom-Seon;Choi, Jun-Hwan;Zhao, Jun;Kang, Sung-Wook
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.175-185
    • /
    • 2015
  • Jack-up type WTIV(Wind Turbine Installation Vessel) is used to avoid the effects of waves when installing wind turbines in the Southwest Sea of South Korea. During the preloading procedure, unexpected penetration may cause some risks such as excessive penetration or punch-through failure. To ensure the safety of the WTIV during preloading, the bearing capacities should be evaluated based on the soil data at each borehole. Eight boreholes (OW-1 to -8) have been drilled in the Southwest Sea of South Korea. The bearing capacities of a spudcan designed to be used in this district are calculated using both a conventional analysis and finite element analysis with the soil properties of OW-1 to -8. A finite element analysis is carried out for OW-1, -3, and -4 to gain an in-depth understanding of the soil behavior during the penetration. OW-1, -3, and -4 are representative boreholes for a strong layer overlying a soft layer, a general soft layer, and a soft layer overlying a strong layer, respectively. The resultant bearing capacity curves versus the depth of the numerical analysis are compared with the conventional method. The results show that the conventional analysis is conservative. Case studies for different spudcan areas and shapes are also conducted to seek an appropriate spudcan type for the Southwest Sea of South Korea. Finally, a spudcan with a rectangular shape and a bearing area of $112.8m^2$ is selected.

Development and Performance Evaluation of Rotational Strut Segment for Releasing Stress when uninstalled (버팀보 해체시 안전성 확보를 위한 응력 해제용 굴절지지대 개발 및 성능 평가)

  • Park, Cheol-Yong;Ku, Il-Keun;Kim, Hyun-Sook;Yang, Jee-Youn;Kim, Hyung-Oh
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.109-110
    • /
    • 2018
  • Preloading Strut applied during installation of the wall jack, but additionally serves to minimize the displacement of soil pressure acting upon dissolution due to the difficulty. In this study, we developed an index of support for the release of stress to facilitate the dismantling of the strut uninstall. The refractive support the axial force acting on the strut are supportable, is refracted at minimum load, disassembly should be easy. In order to find the optimal shape and structural stability of the refractive support We have performed the numerical analysis and performance test to determine the final model. We carried out model tests and UTM test in order to understand the refractive performance and durability of the refractive support for optimal model. Results of the test UTM is refracted all shot 5 times within a target hit number, it was found that there is no problem of the refractive performance. Further, the results of model experiments, it was found that to ensure sufficient durability more than the performance target value of the pin joint support structure.

  • PDF