• 제목/요약/키워드: preimplantation

검색결과 299건 처리시간 0.024초

Application of Hot Start PCR Method in PCR-based Preimplantation Genetic Diagnosis

  • Kim, Sung-Ah;Kang, Moon-Joo;Kim, Hee-Sun;Oh, Sun-Kyung;Ku, Seung-Yup;Choi, Young-Min;Jun, Jong-Kwan;Moon, Shin-Yong
    • Journal of Genetic Medicine
    • /
    • 제9권1호
    • /
    • pp.11-16
    • /
    • 2012
  • Purpose: To determine a method to improve the efficacy and accuracy of preimplantation genetic diagnosis (PGD) - polymerase chain reaction (PCR), we compared hot start PCR and conventional multiplex nested PCR. Materials and Methods: This study was performed with single lymphocyte isolated from whole blood samples that were obtained from two couples with osteogenesis imperfecta (OI). We proceeded with conventional multiplex nested PCR and hot start PCR in which essential reaction components were physically removed, and we compared the amplification rate, allele dropout rate and nonspecific products. Afterward, we used selective method for PGD. Results: In the two couples, the respective amplification rate were 93.5% and 80.0% using conventional multiplex nested PCR and 95.5% and 92.0% using hot start PCR. The respective mean allele dropout rates for the two couples were 42.0% and 14.0% with conventional multiplex nested PCR and 36.0% and 6.0% with hot start PCR. Conclusion: The results demonstrate that the hot start PCR procedure provides higher amplification rates and lower allele dropout rate than the conventional method and that it decreased the nonspecific band in multiplex nested PCR. The hot start method is more efficient for analyzing a single blastomere in clinical PGD.

초기 흰쥐 배아의 발생단계에 있어서의 Alkaline Phosphatase의 활성에 관한 연구 (A Study of Alkaline Phosphatase Activity on the Preimplantation Mouse Embryos)

  • Cho, Wan-Kyoo;Lee, Chung-Choo;Kim, Hee-Kwon
    • 한국동물학회지
    • /
    • 제27권1호
    • /
    • pp.1-12
    • /
    • 1984
  • 생쥐 난자 및 초기 배아의 alkaline phosphatase의 기능을 알아보기 위하여 생화학적인 방법으로 배아의 발생 단계에 따른 효소의 활성도를 측정하였으며, 동 효소의 저해제로 알려진 levamisole이 난자의 성숙분열 및 초기 배아의 발생에 미치는 영향을 관찰하였다. 1. 동 효소의 활성도는 4세포기에서 뚜렷이 나타나며, 각 발생단계에 따른 현저한 변화는 없는 것으로 나타났다. 2. Blastocyst의 alkaline phosphatase의 활성도는 1 mM 및 10 mM의 levamisole에 의해서 각각 40%와 70% 이상 억제되었다. 3. Levamisole은 0.5 mM 이상의 농도에서 난자의 극체 형성을 완전히 억제하였으며, 동일한 농도에서 2세포기 배아 및 morula의 퇴화현상을 일으켰다.

  • PDF

Effects of paternal age on human embryo development in in vitro fertilization with preimplantation genetic screening

  • Kim, Min Kyoung;Park, Jae Kyun;Jeon, Yunmi;Seok, Su Hee;Chang, Eun Mi;Lee, Woo Sik
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제46권1호
    • /
    • pp.22-29
    • /
    • 2019
  • Objective: As paternal age increases, the quality of sperm decreases due to increased DNA fragmentation and aneuploidy. Higher levels of structural chromosomal aberrations in the gametes ultimately decrease both the morphologic quality of embryos and the pregnancy rate. In this study, we investigated whether paternal age affected the euploidy rate. Methods: This study was performed using the medical records of patients who underwent in vitro fertilization (IVF) procedures with preimplantation genetic screening (PGS) from January 2016 to August 2017 at a single center. Based on their morphological grade, embryos were categorized as good- or poor-quality blastocysts. The effects of paternal age were elucidated by adjusting for maternal age. Results: Among the 571 total blastocysts, 219 euploid blastocysts were analyzed by PGS (38.4%). When the study population was divided into four groups according to both maternal and paternal age, significant differences were only noted between groups that differed by maternal age (group 1 vs. 3, p= 0.031; group 2 vs. 4, p= 0.027). Further analysis revealed no significant differences in the euploidy rate among the groups according to the morphological grade of the embryos. Conclusion: Paternal age did not have a significant impact on euploidy rates when PGS was performed. An additional study with a larger sample size is needed to clarify the effects of advanced paternal age on IVF outcomes.

Clinical application of genome-wide single nucleotide polymorphism genotyping and karyomapping for preimplantation genetic testing of Charcot-Marie-Tooth disease

  • Kim, Min Jee;Park, Sun Ok;Hong, Ye Seul;Park, Eun A;Lee, Yu Bin;Choi, Byung-Ok;Lee, Kyung-Ah;Yu, Eun Jeong;Kang, Inn Soo
    • Journal of Genetic Medicine
    • /
    • 제19권1호
    • /
    • pp.7-13
    • /
    • 2022
  • Purpose: Preimplantation genetic testing for monogenic disorders (PGT-M) has been successfully used to prevent couples with monogenic disorders from passing them on to their child. Charcot-Marie-Tooth Disease (CMT) is a genetic disorder characterized by progressive extremity muscle degeneration and loss of sensory function. For the first time in Korea, we report our experience of applying single nucleotide polymorphism genotyping and karyomapping for PGT-M of CMT disease. Materials and Methods: Prior to clinical PGT-M, preclinical tests were performed using genotypes of affected families to identify informative single-nucleotide polymorphisms associated with mutant alleles. We performed five cycles of in vitro fertilization PGT-M in four couples with CMT1A, CMT2A, and CMT2S in CHA Fertility Center, Seoul Station. Results: From July 2020 through August 2021, five cycles of PGT-M with karyomapping in four cases with CMT1 and CMT2 were analyzed retrospectively. A total of 17 blastocysts were biopsied and 15 embryos were successfully diagnosed (88.2%). Ten out of 15 embryos were diagnosed as unaffected (66.7%). Five cycles of PGT-M resulted in four transfer cycles, in which four embryos were transferred. Three clinical pregnancies were achieved (75%) and the prenatal diagnosis by amniocentesis for all three women confirmed PGT-M of karyomapping. One woman delivered a healthy baby uneventfully and two pregnancies are currently ongoing. Conclusion: This is the first report in Korea on the application of karyomapping in PGT-M for CMT patients. This study shows that karyomapping is an efficient, reliable and accurate diagnostic method for PGT-M in various types of CMT diseases.

Clinical outcomes of preimplantation genetic testing for aneuploidy in high-risk patients: A retrospective cohort study

  • Jun Woo Kim;So Young Lee;Chang Young Hur;Jin Ho Lim;Choon Keun Park
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제51권1호
    • /
    • pp.75-84
    • /
    • 2024
  • Objective: The purpose of this study was to evaluate the impact of preimplantation genetic testing for aneuploidy (PGT-A) on clinical outcomes among high-risk patients. Methods: This retrospective study involved 1,368 patients and the same number of cycles, including 520 cycles with PGT-A and 848 cycles without PGT-A. The study participants comprised women of advanced maternal age (AMA) and those affected by recurrent implantation failure (RIF), recurrent pregnancy loss (RPL), or severe male factor infertility (SMF). Results: PGT-A was associated with significant improvements in the implantation rate (IR) and the ongoing pregnancy rate/live birth rate (OPR/LBR) per embryo transfer cycle in the AMA (39.3% vs. 16.2% [p<0.001] and 42.0% vs. 21.8% [p<0.001], respectively), RIF (41.7% vs. 22.0% [p<0.001] and 47.0% vs. 28.6% [p<0.001], respectively), and RPL (45.6% vs. 19.5% [p<0.001] and 49.1% vs. 24.2% [p<0.001], respectively) groups, as well as the IR in the SMF group (43.3% vs. 26.5%, p=0.011). Additionally, PGT-A was associated with lower overall incidence rates of early pregnancy loss in the AMA (16.7% vs. 34.3%, p=0.001) and RPL (16.7% vs. 50.0%, p<0.001) groups. However, the OPR/LBR per total cycle across all PGT-A groups did not significantly exceed that for the non-PGT-A groups. Conclusion: PGT-A demonstrated beneficial effects in high-risk patients. However, our findings indicate that these benefits are more pronounced in carefully selected candidates than in the entire high-risk patient population.

Enhancement of preimplantation mouse embryo development with optimized in vitro culture dish via stabilization of medium osmolarity

  • Hyejin Yoon;Jongwoo Lee;Inyoung Kang;Kyoo Wan Choi;Jaewang Lee;Jin Hyun Jun
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제50권4호
    • /
    • pp.244-252
    • /
    • 2023
  • Objective: We evaluated the efficacy of the newly developed optimized in vitro culture (OIVC) dish for cultivating preimplantation mouse embryos. This dish minimizes the need for mineral oil and incorporates microwells, providing a stable culture environment and enabling independent monitoring of individual embryos. Methods: Mouse pronuclear (PN) zygotes and two-cell-stage embryos were collected at 18 and 46 hours after human chorionic gonadotropin injection, respectively. These were cultured for 120 hours using potassium simplex optimized medium (KSOM) to reach the blastocyst stage. The embryos were randomly allocated into three groups, each cultured in one of three dishes: a 60-mm culture dish, a microdrop dish, and an OIVC dish that we developed. Results: The OIVC dish effectively maintained the osmolarity of the KSOM culture medium over a 5-day period using only 2 mL of mineral oil. This contrasts with the significant osmolarity increase observed in the 60-mm culture dish. Additionally, the OIVC dish exhibited higher blastulation rates from two-cell embryos (100%) relative to the other dish types. Moreover, blastocysts derived from both PN zygotes and two-cell embryos in the OIVC dish group demonstrated significantly elevated mean cell numbers. Conclusion: Use of the OIVC dish markedly increased the number of cells in blastocysts derived from the in vitro culture of preimplantation mouse embryos. The capacity of this dish to maintain medium osmolarity with minimal mineral oil usage represents a breakthrough that may advance embryo culture techniques for various mammals, including human in vitro fertilization and embryo transfer programs.

생쥐 착상전 배아에서 산화적 스트레스에 의한 ATF4 유전자의 발현과 존재 부위 (Expression and Localization of ATF4 Gene on Oxidative Stress in Preimplantation Mouse Embryo)

  • 나원흠;강한승;어진원;계명찬;김문규
    • 한국발생생물학회지:발생과생식
    • /
    • 제10권2호
    • /
    • pp.105-113
    • /
    • 2006
  • 세포의 대사과정에서 생성되는 활성산소종(reactive oxygen species : ROS)은 세포의 성숙과 발생 과정을 저해하며, 인간의 생식 수관에서 불임의 원인이 된다. 많은 세포생물학적 연구를 통해 ROS에 대한 세포 내의 보호 기작이 밝혀지고 있다. Activating transcription factor 4(ATF4)는 세포 내에서 산화적 스트레스를 비롯한 여러 스트레스 요인으로부터 세포를 보호하는 기작에 관여하는 중요한 인자로서, 스트레스에 의한 세포 사멸을 유도하는 유전자의 활성화와 관련이 있다고 알려져 있다. 본 연구에서는 착상 전 초기 배아의 발생 단계에서 ROS에 의한 산화적 스트레스가 배아의 발생에 영향을 준다는 보고와 관련하여 생쥐 초기배아에 산화적 스트레스 요인인 $H_2O_2$(hydrogen peroxide)를 처리한 후 ATF4 유전자의 발현 변화를 추적하였으며, ROS 방어에 관여하는 SOD1 유전자와 apoptosis 유전자인 Bax의 발현 양상을 함께 비교하였다. 또한 면역형광염색법을 이용하여 착상전 초기배아의 ATF4 단백질 발현 부위를 조사하였다. $H_2O_2$를 0.1 mM 농도로 처리한 2-세포기 배아에서는 처리 8시간 후인 4-세포기 단계부터 발생율이 감소하기 시작하였으며, 0.5 mM과 1.0 mM 농도에서는 배아의 발생이 진행되지 않았다. RT-PCR결과 SOD1 유전자의 발현은 $H_2O_2$를 처리한 모든 그룹에서 처리 1시간째인 2-세포기 배아단계에서 대조군보다 증가하였으며, ATF4 유전자 역시 2-세포기 배아단계에서 발현이 증가하였다. Bax 유전자도 통일한 시기에 발현이 증가하였다. ATF4 단백질의 배아 세포 내 발현부위는 스트레스 방어 기작이 주로 일어나는 세포질에서 많이 발현이 되었으며 포배기 배아에서는 내세포괴(inner cell mass)부위 보다는 영양외배엽(trophectoderm)에서 발현됨을 확인하였다. 2-세포기 배아에서 ATF4 immunoreactivity는 모든 $H_2O_2$농도 처리군에서 대조군보다 증가하였다. 이상의 결과에서, 착상 전 초기 배아에서 ROS에 의해 ATF4 발현이 유도됨을 확인하였다. 따라서 산화적 스트레스에 대해 배아를 보호하기 위한 방어 기작에 ATF4가 관여하는 것으로 사료되며, 세포 사멸 유전자의 발현과도 밀접한 관련이 있는 것으로 사료된다.

  • PDF

배양액 내의 마그네슘 이온이 생쥐 초기 배아 발생에 미치는 영향 (Effect of Magnesium Ion in the Culture Medium on the Development of Preimplantation Mouse Embryos In Vitro)

  • 최수진;전진현;박용석;배인하
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제28권3호
    • /
    • pp.199-207
    • /
    • 2001
  • Objective: The present study was undertaken to examine the effects of magnesium ion in the culture medium on the development of mouse fertilized oocytes either before or after pronuclear formation, and to investigate whether the effect of magnesium ion is related with the redistributional change of mitochondria. Methods : Fertilized oocytes obtained from the oviducts of mice at 15 hr after hCG injection before pronuclear formation (pre-PN) or 21 hr after hCG injection after pronuclear formation (post-PN) were used. The embryos were cultured for 3 days with basic T6 medium-magnesium free and various concentrations of magnesium ion, 0.0, 0.5, 1.0, 2.0, 4.0 or 8.0 mM, respectively. After culture, the developmental stages of embryos and the number of nuclei were evaluated. To observe the effects of magnesium ion on the mitochondrial distribution, fertilized oocytes were collected at 21 hr after hCG injection and cultured for 6 hr with various concentration of magnesium ion. As a control, fertilized oocytes with pronuclei at 27 hr after hCG injection were used. Results: The concentration of magnesium ion to accelerate the in vitro development of mouse fertilized oocytes appeared to be at 2.0 mM for the pre-PN and the post-PN stage embryos. In the mitochondrial redistribution patterns, the embryos cultured in 2.0 mM concentration of magnesium ion showed the highest percentage (22.6%) of distinct perinuclear clustering pattern comparing to other experimental group. Conclusion: The effect of magnesium ion may be related to the cytoplasmic redistribution of mitochondria. This relationship seems to connect the developmental competence of preimplantation mouse embryos in vitro. These results can suggest that higher concentration of magnesium ion (2.0 mM) than those of conventional culture medium ($0.2{\sim}1.2\;mM$) is more suitable for in vitro culture of preimplantation mouse embryos.

  • PDF

생쥐의 착상전 배아의 발생과 Glucose Transporter 1 (Glut1) 발현에 대한 포도당과 IGF-I의 영향 (Effects of Glucose and IGF-I on Expression of Glucose Transporter 1 (Glut1) and Development of Preimplantation Mouse Embryo)

  • 전한식;계명찬;김종월;강춘빈;김문규
    • 한국발생생물학회지:발생과생식
    • /
    • 제2권2호
    • /
    • pp.205-212
    • /
    • 1998
  • $Na^{+}$이온 비의존적으로 작동하는 포도당 수송체 (glucose transporter 1, Glut1)는 생쥐 배아의 세포막을 경계로 포도당을 수송하는 주요통로이다. 성장인자 가운데 insulin-like growth factor-I (IGF-I)은 생쥐배아에서 포도당의 유입을 증가시키는 것으로 알려져있으나 이러한 효과가 IGF-I 의한 Glut1의 전사조절 효과에 기인한 것인지는 알려져 있지 않다. 본 연구는 포도당과 IGF-I 생쥐의 착상전 배아 발생과 Glut1 발현에 미치는 영향을 조사함으로써 이들에 의한 배발생 조절기작을 이해하고자 시행하였다. 2-세포기 배아는 배양액내 pyruvate 존재하에 포도당의 유무와 관계없이 포배로 발생하였다. IGF-I은 2-세포기에서 체외 발생한 중기포배내 할구수를 유의하게 증가시켰다. 2-세포기부터 체외발생한 상실배의 Glut1 전사체의 양에는 배양액내 포도당의 유무에 따른 차이가 없었으며, IGF-I은 포도당과 무관하게 Glut1의 발현을 증가시켰다. 이러한 결과에서 상실기 생쥐배아의 경우 단순히 포도당의 결핍에 의해 Glut1의 발현이 전사수준에서 촉진되지 않으며, Glut1 발현의 증가는 IGF-I에 의한 배발생 촉진효과와 관련이 있는 것으로 사료된다.

  • PDF

Pro-apoptotic Effect of Pifithrin-α on Preimplantation Porcine In vitro Fertilized Embryo Development

  • Mulligan, Brendan;Hwang, Jae-Yeon;Kim, Hyung-Min;Oh, Jong-Nam;Choi, Kwang-Hwan;Lee, Chang-Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권12호
    • /
    • pp.1681-1690
    • /
    • 2012
  • The aim of this study was to investigate the impact of a reported p53 inhibitor, pifithrin-${\alpha}$ (PFT-${\alpha}$), on preimplantation porcine in vitro fertilized (IVF) embryo development in culture. Treatment of PFT-${\alpha}$ was administered at both early (0 to 48 hpi), and later stages (48 to 168 hpi) of preimplantation development, and its impact upon the expression of five genes related to apoptosis (p53, bak, bcl-xL, p66Shc and caspase3), was assessed in resulting d 7 blastocysts, using real-time quantitative PCR. Total cell numbers, along with the number of apoptotic nuclei, as detected by the in situ cell death detection assay, were also calculated on d 7 in treated and non-treated control embryos. The results indicate that PFT-${\alpha}$, when administered at both early and later stages of porcine IVF embryo development, increases the incidence of apoptosis in resulting blastocysts. When administered at early cleavage stages, PFT-${\alpha}$ treatment was shown to reduce the developmental competence of porcine IVF embryos, as well as reducing the quality of resulting blastocysts in terms of overall cell numbers. In contrast, at later stages, PFT-${\alpha}$ administration resulted in marginally increased blastocyst development rates amongst treated embryos, but did not affect cell numbers. However, PFT-${\alpha}$ treatment induced apoptosis and apoptotic related gene expression, in all treated embryos, irrespective of the timing of treatment. Our results indicate that PFT-${\alpha}$ may severely compromise the developmental potential of porcine IVF embryos, and is a potent apoptotic agent when placed into porcine embryo culture media. Thus, caution should be exercised when using PFT-${\alpha}$ as a specific inhibitor of p53 mediated apoptosis, in the context of porcine IVF embryo culture systems.