• Title/Summary/Keyword: preheating

Search Result 354, Processing Time 0.027 seconds

다공성 물질에 의한 열재순환 화염에 관한 실험적 연구 I

  • 유영돈;민대기;신현동
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1113-1120
    • /
    • 1988
  • This paper presents the results of an experimental investigation on one dimensional excess enthalpy flame formed in a porous block. The investigation is undertaken in order to further the physical understanding of internal heat recirculation from reaction zone to unburned mixture. Two porous blocks are placed at both sides of combustion block to control the temperature distribution in the combustion block by means of radiation heat transfer. Mean temperature measurement reveals the general nature of the reaction zone in the porous material. It is conformed that the temperature of reaction zone exceeds the adiabatic flame temperature and the flame is stabilized at the out range of flammibility limit derived by conventional burner.

Effects of Cooking Time and HTST Air Dehydration Time on Physical Propertiesof Driet Green Peas

  • 김명환
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.19 no.3
    • /
    • pp.195-200
    • /
    • 1990
  • Effects of cooking time(5-30 min in a pressure cooker) and HTST air dehydratiion time(0-9min at 15$0^{\circ}C$) on physical properties of dried green peas(3% oisture content wet basis) were investigated by determining rehydration ratio rehydration curve browning reaction and puncture force, The rehydration ratio and curve of dried green peas were increased with increa-sing cooking time and HTST air dehydration time. Preheating of the green peas for 30 min in a pressure cooker or for 9 min of HTST air dehydration time prior to 6$0^{\circ}C$ air dehydration recovered a 87.3% of original moisture content of raw green peas in a boiling water for 5 min. The brownin greaction was gradually decreased up to 15 min of cooking time. Puncture pressure of rehydrated green peas treated in a boiling water for 5 min was decreased as the cooking time and HTST air dehydration time were increased and was highly correlated with rehydration (r=-0.956) The effects of cooking time and HTST air dehydration time on rehydration ratio browning reaction and puncture pressure were significantly different at the a=0.01 level except effect of HTST air dehydration time on browning reaction.

  • PDF

Effect of Tio2 particles on the mechanical, bonding properties and microstructural evolution of AA1060/TiO2 composites fabricated by WARB

  • Vini, Mohamad Heydari;Daneshmand, Saeed
    • Advances in materials Research
    • /
    • v.9 no.2
    • /
    • pp.99-107
    • /
    • 2020
  • Reinforced aluminum alloy base composites have become increasingly popular for engineering applications, since they usually possess several desirable properties. Recently, Warm Accumulative Roll Bonding (WARB) process has been used as a new novel process to fabricate particle reinforced metal matrix composites. In the present study, TiO2 particles are used as reinforcement in aluminum metal matrix composites fabricated through warm accumulative roll bonding process. Firstly, the raw aluminum alloy 1060 strips with TiO2 as reinforcement particle were roll bonded to four accumulative rolling cycles by preheating for 5 min at 300℃before each cycle. The mechanical and bonding properties of composites have been studied versus different volume contents of TiO2 particles by tensile test, peeling test and vickers micro-hardness test. Moreover, the fracture surface and peeling surface of samples after the tensile test and peeling test have been studied versus different amount of TiO2 volume contents by scanning electron microscopy. The results indicated that the strength and the average vickers micro-hardness of composites improved by increasing the volume content of TiO2 particles and the amount of their elongation and bonding strength decreased significantly.

Mold-design Verification of Ball Housing Insert Die in Non Processing Type Multi-stage Cold Forging (다단냉간단조 비가공 타입에서 볼하우징 인서트 다이의 금형설계 검증)

  • Hwang, Won-Seok;Choi, Jong-Won;Jung, Eu-Enn;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.8-15
    • /
    • 2021
  • Cold forging is a method in which molding is performed at room temperature. It has a high material recovery rate and dimensional precision and produces excellent surface quality, and it is mainly used for the production of bolted or housing products. The lifespan of cold forging molds is generally determined by the wear of the mold, plastic deformation of the mold, and fatigue strength. Cold forging molds are frequently damaged due to fatigue destruction rather than wear and plastic deformation in a high-temperature environment as it is molded at room temperature without preheating the raw material and mold. Based on the results analyzed through FEM, an effective mold structure design method was proposed by analyzing the changes in tensile and compressive stresses on molds according to the number of molds and reinforcement rings and comparing the product geometry and mold stress using three existing mold models.

The Effect of Die Cooling on the Surface Defects of the Aluminum 7075 Extrudates (알루미늄 7075 합금의 압출에서 금형 냉각이 압출재의 표면 결함에 미치는 영향)

  • S.Y., Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.6
    • /
    • pp.319-326
    • /
    • 2022
  • Direct extrusions of an aluminum 7075 alloy were carried out using 1500 ton machine with and without die cooling system. Cooling of extrusion die has been performed by the flow of liquid nitrogen and controlled by laser thermometer. Billet was 180 mm in diameter and 500 mm in length. The preheating temperatures of billet, container and die were 390℃, 400℃ and 450℃, respectively. Ram speed was kept with 1.25 mm/sec first. The change of ram speed was carried out during extrusion according to the observation of surface defects such as crack or tearing. Extrudates of 8.3 m in length, 100 mm in width and 15 mm in thickness were obtained to observe and analyze surface defects by optical microscopy and EBSD (Electron BackScattered Diffraction). In case of extrusion without die cooling cracks on the surface and tearing in the corner of extrudate occurred in the middle stage and developed in size and frequency during the late stage of extrusion. At the extrusion with die cooling the occurrence of defects could be suppressed on the most part of extrudate. EBSD micrographs showed that cracks and tearings have been resulted from the same origin. Surface defects were generated at the boundaries of grains formed by secondary recrystallization due to surface overheating during extrusion.

A Simplified Method to Estimate Welding Induced Crack of Weldments with Initial Structural Restraints

  • Lee, J.M.;Paik, J.K.;Kim, M.H.;Kang, S.W.;Heo, H.Y.
    • International Journal of Korean Welding Society
    • /
    • v.4 no.1
    • /
    • pp.38-45
    • /
    • 2004
  • A practical method for evaluating the possibility of the occurrence of cracking in actual thick-plate T-joint weldments is presented in this study. Systematic experitrients based on the method of the design of experiment are conducted in order to investigate the crack tendency in relation to typical welding parameters such as diffusible hydrogen, restraint intensity, preheating temperature and so on. The elastic analysis using the fmite element techniques is employed to quantify the restraint intensities of the specimens. The defined restraint intensities are treated in numerical way for the sake of considering the most uncertain factor among some major factors that govern the cracking phenomena due to welding. The critical plane for judgment of the crack occurrence or crack density is presented as a function of typical welding parameters including determined restraint intensities. The results of numerical estimation by the proposed method for the experimental specimens show the usefulness as a practical tool in welding induced crack problem having extensive uncertainties.

  • PDF

The Use of Lupins in Feeding Systems - Review -

  • Petterson, D.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.6
    • /
    • pp.861-882
    • /
    • 2000
  • The seed, or grain, of modern cultivars of Lupinus angustifolius, commonly known as Australian sweet lupins (ASL), is an established feed resource for the intensive animal industries of Australia, Japan, Korea and several other countries in Asia and Europe. Since the introduction of ASL to the world marketplace about 25 years ago, researchers in many countries have found them to be a valuable component of the diet of beef and dairy cattle, sheep, pigs, poultry, finfish and crustaceans. The seed of ASL contains ~32% crude protein (CP) (~35% DM basis) and 5% oil. The main storage carbohydrates in the seed are the ${\beta}$-galactans that comprise most of the cell-wall material of the kernel and the cellulose and hemicellulose of the thick seed coats. ASL seeds contain about 40% non-starch polysaccharides (NSP) and a negligible amount of starch. This makes them an excellent ingredient for ruminant diets, as the risk of acidosis is very low. The seed of modern cultivars of domesticated Lupinus species contain negligible amounts of lectins and trypsin inhibitors so they do not require preheating before being used as an ingredient in feeds for monogastric species. They have a high digestibility coefficient for protein, >90% for most species, but a low energy digestibility, ~60%, which is mostly due to the high content of NSP. The low content of methionine (0.22%) and of lysine (1.46%) is typical of the legumes. The lysine availability for pigs is >70%. Lupin kernels contain ~39% CP (~42% DM basis), 6% oil and 30% NSP. They have a higher digestible energy for pigs and finfish and a higher metabolisable energy for poultry than whole seed. Commercial operations rarely achieve complete separation of kernel from hull and it is more likely that the kernel fraction, called splits or meats, will contain ~36% CP. The replacement of soybean meal or peas with ASL in cereal-based diets for most intensively reared animals, birds and fish is possible provided lysine, methionine and digestible energy levels are kept constant. This makes ASL economically competitive in many, but not all, circumstances.

Numerical Analysis of Integrated Fuel Processing System Considering Thermo-Chemical Energy Balance (열/화학적 에너지 평형을 고려한 통합 연료 개질 시스템의 수치적 연구)

  • Noh, Junghun;Jung, Hye-Mi;Jung, Un-Ho;Yoon, Wang-Lai;Um, Sukkee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.111.1-111.1
    • /
    • 2010
  • This paper focuses on a systematic configuration of steam reforming fuel processor, particularly designed for small and medium sized hydrogen production application. In a typical integration of the fuel processor, there exist significant temperature gradients over the entire system which has negative effect on both catalyst life-time and system performance. Also, the volumetric inefficiency should be avoided to obtain the possible compactness for the commercial purpose. In the present work, the computational analysis will be performed to gain the fundamental insight on the transport phenomena and chemical reactions in the reformer consisting of preheating, steam reforming (SR), and water gas shift (WGS) reaction beds in the flow direction. Also, the fuel processing system includes a top-fired burner providing necessary thermal energy for endothermic catalytic reactor. A fully two-dimensional numerical modeling for a integrated fuel processing system is introduced for in-depth analysis of the heat and mass transport phenomena based on surface kinetics and catalytic process. In the model, water gas shift reaction and decomposition reaction were assumed to be at equilibrium. A kinetic model was developed and then computational results were compared with the experimental data available in the literature. Finally, the case study was done by considering the key parameters, i.e. steam to carbon (S/C) ratio and temperature. The computer-aided models developed in this study can be greatly utilized for the design of advanced fast-paced compact fuel processors research.

  • PDF

TENSILE BOND STRENGTH OF SOLDER JOINT BETWEEN GOLD ALLOY AND NICKEL-CHROMIUM ALLOY (금합금과 Ni-Cr 합금의 납착부 인장강도)

  • Jeong, Jun-Oh;Choi, Hyeon-Mi;Choi, Jeong-Ho;Ahn, Seung-Geun;Song, Kwang-Yeob;Park, Charn-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.1
    • /
    • pp.143-150
    • /
    • 1996
  • The purpose of this study was to evaluate the tensile strength of solder joint between gold alloy and nickel-chromium alloy. The specimens were made with type III gold alloys and Ni-Cr-Be alloy and Degular Lot 2 solder. Eighteen paired specimens were made, and subdivided into three groups. Group I specimens were gold alloy-gold alloy combination, Group II specimens were gold alloy-Ni-Cr alloy combination, Group III specimens were Ni-Cr alloy-Ni-Cr alloy combination. Solder block were made with solder investment(Degussa A,G, Germany) and stored in room temperature for 24 hours. To reduce the formation of metallic oxide and increase wetting properties, flux was used before preheating and soldering procedure. The specimens were preheated at $650^{\circ}C$ and flux were applied again and gas-oxygen torch was used to solder the specimen. All soldered specimens were subjected to a tensile force in the Instron universal testing machine : the crosshead speed was 1 mm/mim. Tensile strength values of three soldered joint groups were 1. Gold alloy-Gold alloy solder joint : $$48.8kg/mm^2$$ 2. Gold alloy-Ni-Cr alloy solder joint : $$30.9kg/mm^2$$ 3. Ni-Cr alloy-Ni-Cr alloy solder joint : $$31.8kg/mm^2$$ The microscopic examination of fracture site showed cohesive and combination fracture modes in gold alloy specimens, but showed all adhesive fracture modes in Ni-Cr alloy containing specimens.

  • PDF

Experimental Study on the Characteristics of Combustion in Indirect Moxibustion with Garlic (마늘뜸의 연소특성에 관한 연구)

  • Lee, Geon-mok;Lee, Geon-hyee;Cho, Nam-geun;Park, So-young
    • Journal of Acupuncture Research
    • /
    • v.21 no.4
    • /
    • pp.31-51
    • /
    • 2004
  • Objective: The propose of this study is to investigate the characteristics of combustion in indirect moxibustion with garlic. Methods: We observed the characteristics of combustion by the variations of the thickness(3mm, 4mm, 5mm) of a slice for indirect moxibustion with garlic and mass(80mg, 100mg, 120mg) of moxa cone and existence of holes. The temperature of indirect moxibustion for garlic insulation with holes was higher than temperature of indirect moxibustion for garlic insulation without holes. Combustions time in the preheating period is about 1 minute, it varies by the existence of holes, the thickness of a slice for indirect moxibustion with garlic, and the density of moxa cone. Results: Maximum temperature of heating period was $38.7{\sim}46.2^{\circ}C$, combustion time in the heating period was 118~164sec and maximum ascending temperature gradient was $0.102{\sim}0.264^{\circ}C/sec$. Retaining period was shorter than heating period and stimulus of heating retains more, because it is higher than body temperature. By this report, indirect moxibustion with garlic is more effective with holes and the appropriate thickness of a slice for indirect moxibustion with garlic is 3.5~4mm. It is appropriate that the diameter of moxa cone is 8mm and height of that is 10mm. With this condition, effective combustion period is 120sec, maximum temperature is $42{\sim}44^{\circ}C$, maximum ascending temperature gradient is $0.14{\sim}0.16^{\circ}C/sec$. It is necessary to study clinical correlations for more accurate quantitative standard.

  • PDF