• Title/Summary/Keyword: prefix adder

Search Result 4, Processing Time 0.018 seconds

An Energy-Efficient 64-bit Prefix Adder based on Semidynamic and Bypassing Structures

  • Hwang, Jaemin;Choi, Seongrim;Nam, Byeong-Gyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.1
    • /
    • pp.150-153
    • /
    • 2015
  • An energy-efficient 64-bit prefix adder is proposed for micro-server processors based on both semidynamic and bypassing structures. Prefix adders consist of three main stages i.e. propagate-generate (PG) stage, carry merge (CM) tree, and sum generators. In this architecture, the PG and CM stages consume most of the power because these are based on domino circuits. This letter proposes a semidynamic PG stage for its energy-efficiency. In addition, we adopt the bypassing structure on the CM tree to reduce its switching activity. Experimental results show 19.1% improvement of energy efficiency from prior art.

Design of Pipelined Floating-Point Arithmetic Unit for Mobile 3D Graphics Applications

  • Choi, Byeong-Yoon;Ha, Chang-Soo;Lee, Jong-Hyoung;Salclc, Zoran;Lee, Duck-Myung
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.6
    • /
    • pp.816-827
    • /
    • 2008
  • In this paper, two-stage pipelined floating-point arithmetic unit (FP-AU) is designed. The FP-AU processor supports seventeen operations to apply 3D graphics processor and has area-efficient and low-latency architecture that makes use of modified dual-path computation scheme, new normalization circuit, and modified compound adder based on flagged prefix adder. The FP-AU has about 4-ns delay time at logic synthesis condition using $0.18{\mu}m$ CMOS standard cell library and consists of about 5,930 gates. Because it has 250 MFLOPS execution rate and supports saturated arithmetic including a number of graphics-oriented operations, it is applicable to mobile 3D graphics accelerator efficiently.

  • PDF

Towards Characterization of Modern FPGAs: A Case Study with Adders and MIPS CPU (가산기와 MIPS CPU 사례를 이용한 현대 FPGA의 특성연구)

  • Lee, Boseon;Suh, Taewon
    • The Journal of Korean Association of Computer Education
    • /
    • v.16 no.3
    • /
    • pp.99-105
    • /
    • 2013
  • The FPGA-based emulation is an essential step in ASIC design for validation. For emulation with maximal frequency, it is crucial to understand the FPGA characteristics. This paper attempts to analyze the performance characteristics of the modern FPGAs from renowned vendors, Xilinx and Altera, with a case study utilizing various adders and MIPS CPU. Unlike the common wisdom, ripple-carry adder (RCA) does not utilize the inherent carry-chain inside FPGAs when structurally designed based on 1-bit adders. Thus, the RCA shows the inferior performance to the other types of adders in FPGAs. Our study also reveals that FPGAs from Xilinx exhibit different characteristics from the ones from Altera. That is, the prefix adder, which is optimized for speed in ASIC design, shows the poor performance on Xilinx devices, whereas it provides a comparable speed to the IP core on Altera devices. It suggests that error-prone manual change of the original design can be avoided on Altera devices if area is permitted. Experiments with MIPS CPU confirm the arguments.

  • PDF

Design of Floating-Point Multiplier for Mobile Graphics Application (모바일 그래픽스 응용을 위한 부동소수점 승산기의 설계)

  • Choi, Byeong-Yoon;Salcic, Zoran
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.3
    • /
    • pp.547-554
    • /
    • 2008
  • In this paper, two-stage pipelined floating-point multiplier (FP-MUL) is designed. The FP-MUL processor supports single precision multiplication for 3D graphic APIs, such as OpenGL and Direct3D and has area-efficient and low-latency architecture via saturated arithmetic, area-efficient sticky-bit generator, and flagged prefix adder. The FP-MUL has about 4-ns delay time under $0.13{\mu}m$ CMOS standard cell library and consists of about 7,500 gates. Because its maximum performance is about 250 MFLOPS, it can be applicable to mobile 3D graphics application.