• Title/Summary/Keyword: prefabrication

Search Result 78, Processing Time 0.03 seconds

Beyond Net Zero - SOM's Urban Sequoia Building Concept and Technologies for Future, Regenerative Cities

  • Mina Hasman;Jiejing Zhou;Alice Guarisco;Nicholas Chan;Alessandro Beghini;Zhaofan Li;Michael Cascio;Yasemin Kologlu
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.2
    • /
    • pp.121-128
    • /
    • 2023
  • Cities cover only 3% of the planet's surface, yet they are responsible for more than 75% of the global emissions. Given the projected urban built area will double by 2060, the carbon emitted from cities will further increase. SOM proposes the Urban Sequoia concept, for buildings that go beyond 'net zero' and absorb carbon from the atmosphere. This concept combines multiple strategies, including the use of an optimised building form with a highly efficient structural system, modularized prefabrication techniques, holistic integration of facade, MEP and interiors' components, bio-based materials, and Direct Air Capture (DAC) technology, to reduce a 40-storey building's whole life cycle carbon emissions by more than 300% over a 100-year lifespan. Calculations of embodied carbon emissions are performed with SOM's in-house Environmental Analysis (EA) Tool to demonstrate the effectiveness of employing Urban Sequoia's design strategies in the design of new buildings using current technologies.

Analysis of Techniques for Carbon Reduction in Residential Construction (주거건축에서의 탄소저감을 위한 기법 분석)

  • Kim, Minsoo;Lee, Taegoo
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.26 no.2
    • /
    • pp.9-16
    • /
    • 2024
  • In order to achieve carbon neutrality in the architectural field by 2050, this study analyzed the energy impact proportional to CO2 emissions of each technique, such as design methods, the properties of building structures, prefabrication methods, passive houses, and active facilities. In addition, the results were presented quantitatively in terms of carbon reduction, and corresponding housing cases were analyzed. The research method is limited to residential buildings at the Passive House energy level, and carbon reduction techniques and elements in architecture are examined through various literature and materials, and empirical cases are analyzed to determine the specific possibility of realizing carbon reduction in architecture. We want to secure it. Based on these analysis results, it was possible to suggest that it is possible to explore various approaches to carbon reduction in future residential construction. By combining the most efficient techniques according to the energy reduction level or goal setting of the building in question, we expect the possibility of achieving the goal of carbon reduction in the residential sector more realistically.

Effective Reconstruction of Extensive Orbital Floor Fractures Using Rapid Prototyping Model (신속 조형 모델을 이용한 안와바닥 골절 정복술)

  • Kim, Hye-Young;Oh, Deuk-Young;Lee, Woo-Sung;Moon, Suk-Ho;Seo, Je-Won;Lee, Jung-Ho;Rhie, Jong-Won;Ahn, Sang-Tae
    • Archives of Plastic Surgery
    • /
    • v.37 no.5
    • /
    • pp.633-638
    • /
    • 2010
  • Purpose: Orbital bone is one of the most complex bones in the human body. When the patient has a fracture of the orbital bone, it is difficult for the surgeon to restore the fractured orbital bone to normal anatomic curvature because the orbital bone has complex curvature. We developed a rapid prototyping model based on a mirror image of the patient's 3D-CT (3 dimensional computed tomography) for accurate reduction of the fractured orbital wall. Methods: A total of 7 cases of large orbital wall fracture recieved absorbable plate prefabrication using rapid prototyping model during surgery and had the manufactured plate inserted in the fracture site. Results: There was no significant postoperative complication. One patient had persistent diplopia, but it was resolved completely after 5 weeks. Enophthalmos was improved in all patients. Conclusion: With long term follow-up, this new method of orbital wall reduction proved to be accurate, efficient and cost-effective, and we recommend this method for difficult large orbital wall fracture operations.

Compression Test for Prefabricated Composite Columns Using High-Strength Steel Angles (고강도 앵글을 적용한 선조립 합성기둥의 압축 실험)

  • Hwang, Hyeon-Jong;Eom, Tae-Sung;Park, Hong-Gun;Lee, Chang-Nam;Kim, Hyoung-Seop
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.361-369
    • /
    • 2012
  • In this study, prefabricated composite columns using high-strength angles (PSRC composite column) was studied. Concentric axial loading tests were performed for 2/3 scale PSRC specimens and an conventional SRC specimen with H-steel at the center of the cross-section. The test parameters were the steel ratio of angles and the spacing of lateral re-bars. The test results showed that by placing the angles at the corners of the cross-section for confinement with provided for the core concrete, the PSRC column specimens exhibited greater load-carrying capacity and deformation capacity than those of the conventional SRC column. The axial load-carrying capacity of the PSRC columns was greater than the prediction by KBC 2009. Using existing stress-strain relationship of confined concrete, the axial load-deformation relationship of the specimens were predicted. The numerical predictions correlated well with the test results in terms of initial stiffness, load-carrying capacity, and post-peak strength- and stiffness-degradations.

Cyclic Loading Tests for Prefabricated Composite Columns Using Steel Angle and Reinforcing Bar (PSRC 합성기둥의 반복가력 실험)

  • Hwang, Hyeon Jong;Eom, Tae Sung;Park, Hong Gun;Lee, Chang Nam;Kim, Hyoung Seop
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.6
    • /
    • pp.635-647
    • /
    • 2013
  • PSRC composite column is a concrete encased steel angle column. In the PSRC composite column, the steel angles placed at the corner of the cross-section resists bending moment and compression load. In the present study, using the performance criteria in KBC 2009, cyclic lateral loading test was performed for PSRC columns to verify the seismic performance. The test parameters were the column type, the use of continuous hoop, and the use of studs for steel angle. 2/3 scale specimens of a conventional composite column and three PSRC columns were tested. The test results showed that the load-carrying capacity predicted by KBC 2009 correlated well with the test results. The specimens also exhibited good deformation and energy dissipation capacities. After concrete cover spalling under cyclic loading, the load-carrying capacity were decreased by buckling of longitudinal bars and steel angles. When continuous hoop was used, the deformability of the PSRC column was improved, preventing early buckling of the steel angles.

A new precast wall connection subjected to monotonic loading

  • Vaghei, Ramin;Hejazi, Farzad;Taheri, Hafez;Jaafar, Mohd Saleh;Ali, Abang Abdullah Abang
    • Computers and Concrete
    • /
    • v.17 no.1
    • /
    • pp.1-27
    • /
    • 2016
  • Final construction project cost is significantly determined by construction rate. The Industrialized Building System (IBS) was promoted to enhance the importance of prefabrication technology rather than conventional methods in construction. Ensuring the stability of a building constructed by using IBS is a challenging issue. Accordingly, the connections in a prefabricated building have a basic, natural, and essential role in providing the best continuity among the members of the building. Deficiencies of conventional precast connections were observed when precast buildings experience a large induced load, such as earthquakes and other disasters. Thus, researchers aim to determine the behavior of precast concrete structure with a specific type of connection. To clarify this problem, this study investigates the capacity behavior of precast concrete panel connections for industrial buildings with a new type of precast wall-to-wall connection (i.e., U-shaped steel channel connection). This capacity behavior is compared with the capacity behavior of precast concrete panel connections for industrial buildings that used a common approach (i.e., loop connection), which is subjected to monotonic loading as in-plane and out-of-plane loading by developing a finite element model. The principal stress distribution, deformation of concrete panels and welded wire mesh (BRC) reinforcements, plastic strain trend in the concrete panels and connections, and crack propagations are investigated for the aforementioned connection. Pushover analysis revealed that loop connections have significant defects in terms of strength for in-plane and out-of-plane loads at three translational degrees of freedom compared with the U-shaped steel channel connection.

Evaluation of Structural Performance of Precast Modular Pier Cap (프리캐스트 모듈러 피어캡의 구조성능 평가)

  • Kim, Dong Wook;Shim, Chang Su
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.1
    • /
    • pp.55-63
    • /
    • 2015
  • Prefabrication technologies are making bridge construction safer and less disruptive to the environment and traveling public, making bridge designs more constructible and, improving the quality and durability by shifting site work to a more controllable environment. Modular bridge substructures with concrete-filled steel tube (CFT) piers and composite pier caps were suggested to realize accelerated bridge construction. The precast segmental pier cap consists of a composite pier table and precast prestressed segments on the table. The pier table has embedded steel section to mitigate stress concentration at the connection by small tubes. Each bridge pier has four or six CFT columns which connect to the pier cap. Shear strength of the pier cap was obtained by extending vertical reinforcing bars from the table to the precast segment. Transverse prestressing was introduced to control tensile stresses by service loadings. Structural performance of the proposed modular system was evaluated by static tests. Design requirements of the composite pier cap were satisfied by continuous reinforcing bars and prestressing tendons. Standardized modular substructures can be effectively utilized for the fast replacement or construction of bridges.

A Study on Comparing Characteristics of Le Corbusier′s Furniture Design with Alvar Aalto′s (르 꼬르뷔지에와 알바 알토의 가구디자인 특성 비교 연구)

  • 이진영
    • Korean Institute of Interior Design Journal
    • /
    • v.13 no.5
    • /
    • pp.162-172
    • /
    • 2004
  • Architects and designers of the 20th Century made various efforts to establish new design languages reflecting the changes of society, the times, and environment. They used furniture, especially chairs, as controversial items of aesthetic value, society and ideology. Le Corbusier and Alvar Aalto are furniture designers as well as architects, who adopted this ‘spirit of the times’ actively and have greatly contributed to modernism. This study will help us to understand the diversity of design since modernism, by comparing these two designers' furniture design. It also covers the common factors In modern furniture design, and analyses their individuality and likeness In design. The following is a comparison of furniture design by Le Corbusier and Alvar Aalto. Le Courbusier linked International design and Aalto linked Rational design and Organic concept design to their furniture, just as they did in their architecture. They were able to establish the base of modern furniture design by adapting new concepts and pursuing humanism. In structure, Le Corbusier's furniture Is simple and proportional. It demonstrates a sophisticated geometric composition, mechanical beauty. On the other hand, Aalto rationally linked nature with human requirements and his furniture is organic and in harmony with geometric structure. In function, Le Corbusier's furniture is standardized and prefabricated. He designed for the user so they could choose to use the furniture efficiently to suit their needs. In comparison with Le Corbusier, Aalto Invented the ‘Stacking Chair’ which allows a more effective use of space and reflected the structure of the human body to improve the user's comfort. In materials and techniques, Le Corbusier used new materials like metal or leather, and attempted new ways such as welding, prefabrication, and standardization for production. On the contrary, Alto mainly used birch, which is the traditional material in Finland, and tried new bent wood techniques and joining methods.

Identifying Considerations for Developing SLAM-based Mobile Scan Backpack System for Rapid Building Scanning (신속한 건축물 스캔을 위한 SLAM기반 이동형 스캔백팩 시스템 개발 고려사항 도출)

  • Kang, Tae-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.312-320
    • /
    • 2020
  • 3D scanning began in the field of manufacturing. In the construction field, a BIM (Building Information Modeling)-based 3D modeling environment was developed and used for the overall construction, such as factory prefabrication, structure construction inspection, plant facility, bridge, tunnel structure inspection using 3D scanning technology. LiDARs have higher accuracy and density than mobile scanners but require longer registration times and data processing. On the other hand, in interior building space management, relatively high accuracy is not needed, and the user can conveniently move with a mobile scan system. This study derives considerations for the development of Simultaneous Localization and Mapping (SLAM)-based Scan Backpack systems that move freely and support real-time point cloud registration. This paper proposes the mobile scan system, framework, and component structure to derive the considerations and improve scan productivity. Prototype development was carried out in two stages, SLAM and ScanBackpack, to derive the considerations and analyze the results.

An Experimental Study on Flexural Strength of Modular Composite profiled Beams (휨 보강된 모듈단면 합성 프로파일보의 휨 내력에 관한 실험적 연구)

  • Ahn, Hyung Joon;Ryu, Soo Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.3
    • /
    • pp.323-333
    • /
    • 2007
  • This paper presents a study that attempted to improve the site applicability of profile sheets and check the effects of bending reinforcement in composite profiled beams, and consequently, to suggest an improved modular-type CB2 and two types of bending reinforcement methods. As a result of the reinforcing and reforming modular profiled beam experiment conducted, CBIIshowed an adequate deformation capacity as well as a sufficient plastic plateau at the maximum load and thereafter. For all the specimens, an insignificant modular slip occurred while linear relations were kept constant, at up to approximately 50% of the maximum load and at constant linear relations. The experimental values were very low. Probably, due to the small-scale experiment, the area of the concrete for the concrete filling and covering might have been insufficient, which might have led to the failure to improve the strength. Comparing the results with the standard design stress, all the specimens-except for T16 and B16-indicated more than 0.9. Based on the standard design stress, the reinforced modular profiled beam was consideredto have positive applicability.