The purpose of this study was to validate the Suicidal Ideation Attributes Scale(SIDAS) which can measure the severity of suicidal ideation in a sample of 399 Korean adults. For this purpose, an online survey was conducted for two weeks from July 2020 to August 2020. First, there were differences in SIDAS scores among groups divided by gender, residence status, depression and anxiety symptoms, suicidal ideation, suicidal plan, suicidal preparation, and suicidal attempt. Second, correlations between SIDAS, C-SSRS suicidal ideation intensity question(3 items), and the Rosenberg Self-efficacy (RSE) were examined to confirm the validity of SIDAS. As a result, correlations between the SIDAS and suicidal ideation intesity items of C-SSRS were significant in all items, while correlations between the SIDAS and RSE items were negative or insignificant. Third, as a result of the confirmatory factor analysis of SIDAS on all respondents and respondents with suicidal ideation, a single factor structure was appropriate for both groups. Internal consistency of SIDAS was also good. Lastly, as a result of identifying the variables affecting the suicidal plan over the past year, controllability and age were identified as significant predictive variables. SIDAS which was designed to be administered through web, can be appropriately used in Korea. It was confirmed that SIDAS is a reliable and valid suicidal ideation scale which is applicable to adults in Korea.
Gyu Won Kim;Woon Jeong Lee;Daehee Kim;June Young Lee;Sang Yun, Kim;Sikyoung Jeong;Sungyoup Hong;Seon Hee Woo
Journal of The Korean Society of Clinical Toxicology
/
v.20
no.2
/
pp.58-65
/
2022
Purpose: Alcohol is one of the most commonly co-ingested agents in deliberate self-poisoning (DSP) cases presenting at the emergency department (ED). The increased impulsivity, aggressiveness, and disinhibition caused by alcohol ingestion may have different clinical features and outcomes in cases of DSP. This study investigates whether alcohol co-ingestion affects the clinical features and outcomes of DSP patients in the ED. Methods: This was a single-center retrospective study. We investigated DSP cases who visited our ED from January 2010 to December 2016. Patients were classified into two groups: with (ALC+) or without (ALC-) alcohol co-ingestion. The clinical features of DSP were compared by considering the co-ingestion of alcohol, and the factors related to discharge against medical advice (AMA) of DSP were analyzed. Results: A total of 689 patients were included in the study, with 272 (39.5%) in the ALC+ group. Majority of the ALC+ group patients were middle-aged males (45-54 years old) and arrived at the ED at night. The rate of discharge AMA from ED was significantly higher in the ALC+ group (130; 47.8%) compared to the ALC- group (p=0.001). No significant differences were obtained in the poisoning severity scores between the two groups (p=0.223). Multivariate analysis revealed that alcohol co-ingestion (odds ratio [OR]=1.42; 95% confidence interval [CI], 1.01-1.98), alert mental status (OR=1.65; 95% CI, 1.17-2.32), past psychiatric history (OR=0.04; 95% CI, 0.01-0.28), age >65 years (OR=0.42; 95% CI, 0.23-0.78), and time from event to ED arrival >6 hrs (OR=0.57; 95% CI, 0.37-0.88) were independent predictive factors of discharge AMA (p=0.043, p=0.004, p=0.001, p=0.006, and p=0.010, respectively). Conclusion: Our results determined a high association between alcohol co-ingestion and the outcome of discharge AMA in DSP patients. Emergency physicians should, therefore, be aware that DSP patients who have co-ingested alcohol may be uncooperative and at high risk of discharge AMA.
KIPS Transactions on Software and Data Engineering
/
v.12
no.2
/
pp.59-76
/
2023
Since the COVID-19 era, the rise in apartment prices has been unconventional. In this uncertain real estate market, price prediction research is very important. In this paper, a model is created to predict the actual transaction price of future apartments after building a vast data set of 870,000 from 2015 to 2020 through data collection and crawling on various real estate sites and collecting as many variables as possible. This study first solved the multicollinearity problem by removing and combining variables. After that, a total of five variable selection algorithms were used to extract meaningful independent variables, such as Forward Selection, Backward Elimination, Stepwise Selection, L1 Regulation, and Principal Component Analysis(PCA). In addition, a total of four machine learning and deep learning algorithms were used for deep neural network(DNN), XGBoost, CatBoost, and Linear Regression to learn the model after hyperparameter optimization and compare predictive power between models. In the additional experiment, the experiment was conducted while changing the number of nodes and layers of the DNN to find the most appropriate number of nodes and layers. In conclusion, as a model with the best performance, the actual transaction price of apartments in 2021 was predicted and compared with the actual data in 2021. Through this, I am confident that machine learning and deep learning will help investors make the right decisions when purchasing homes in various economic situations.
The use of lithium-ion batteries increases significantly with the rapid spread of electronic devices and electric vehicle and thereby an increase in the amount of waste batteries is expected in the near future. Therefore, studies are continuously being conducted to recover various resources of cathode active material (Ni, Co, Mn, Li) from waste battery. In order to recover the cathode active material, black mass is generally recovered from waste battery. The general process of recovering black mass is a waste battery collection - discharge - dismantling - crushing - classification process. This study focus on the crushing/classification process among the processes. Specifically, the particle size distribution of various samples at each crushing/classification step were evaluated, and the particle shape of each particle fraction was analyzed with a microscope and SEM (Scanning Electron Microscopy)-EDS(Energy Dispersive Spectrometer). As a result, among the black mass particle, fine particle less than 74 ㎛ was the mixture of cathode and anode active material which are properly liberated from the current metals. However, coarse particle larger than 100 ㎛ was present in a form in which the current metal and active material were combined. In addition, this study developed a PBM(Population Balance Model) system that can simulate two-species mixture sample with two different crushing properties. Using developed model, the breakage parameters of two species was derived and predictive performance of breakage distribution was verified.
Park Hyun-Il;Seok Jeong-Woo;Hwang Dae-Jin;Cho Chun-Whan
Journal of the Korean Geotechnical Society
/
v.22
no.6
/
pp.15-26
/
2006
Although numerous investigations have been performed over the years to predict the behavior and bearing capacity of piles, the mechanisms are not yet entirely understood. The prediction of bearing capacity is a difficult task, because large numbers of factors affect the capacity and also have complex relationship one another. Therefore, it is extremely difficult to search the essential factors among many factors, which are related with ground condition, pile type, driving condition and others, and then appropriately consider complicated relationship among the searched factors. The present paper describes the application of Artificial Neural Network (ANN) in predicting the capacity including its components at the tip and along the shaft from dynamic load test of the driven piles. Firstly, the effect of each factor on the value of bearing capacity is investigated on the basis of sensitivity analysis using ANN modeling. Secondly, the authors use the design methodology composed of ANN and genetic algorithm (GA) to find optimal neural network model to predict the bearing capacity. The authors allow this methodology to find the appropriate combination of input parameters, the number of hidden units and the transfer structure among the input, the hidden and the out layers. The results of this study indicate that the neural network model serves as a reliable and simple predictive tool for the bearing capacity of driven piles.
Journal of The Korean Society of Grassland and Forage Science
/
v.42
no.1
/
pp.1-9
/
2022
This study was carried out to compare the DMY (dry matter yield) of IRG (Italian ryegrass) in the southern coastal regions of Korea due to seasonal climate scenarios such as the Kaul-Changma (late monsoon) in autumn, extreme winter cold, and drought in the next spring. The IRG data (n = 203) were collected from various Reports for Collaborative Research Program to Develop New Cultivars of Summer Crops in Jeju, 203 Namwon, and Yeungam from the Rural Development Administration - (en DASH). In order to define the seasonal climate scenarios, climate variables including temperature, humidity, wind, sunshine were used by collected from the Korean Meteorological Administration. The discriminant analysis based on 5% significance level was performed to distinguish normal and abnormal climate scenarios. Furthermore, the DMY comparison was simulated based on the information of sample distribution of IRG. As a result, in the southern coastal regions, only the impact of next spring drought on DMY of IRG was critical. Although the severe winter cold was clearly classified from the normal, there was no difference in DMY. Thus, the DMY comparison was simulated only for the next spring drought. Under the yield comparison simulation, DMY (kg/ha) in the normal and drought was 14,743.83 and 12,707.97 respectively. It implies that the expected damage caused by the spring drought was about 2,000 kg/ha. Furthermore, the predicted DMY of spring drought was wider and slower than that of normal, indicating on high variability. This study is meaningful in confirming the predictive DMY damage and its possibility by spring drought for IRG via statistical simulation considering seasonal climate scenarios.
The purpose of this study was to compare the usefulness of the lipid ratio indicators for the diagnosis of metabolic syndrome in the elderly aged 65 years or older. From January 2018 to December 2020, 1,464 people aged 65 years or older who underwent a health checkup at a general hospital in Seoul were included. Lipid ratio indicators were measured through blood tests. The prevalence of metabolic syndrome according to the quartiles of the lipid ratio index was confirmed by logistic regression analysis. In addition, the metabolic syndrome predictive ability and cutoff value of the lipid ratio indices were estimated with the receiver operating characteristic(ROC) curve. The correlation between atherogenic index of plasma(AIP) and waist circumference was the highest in both men and women(r=0.278, p<0.001 vs r=0.252, p<0.001). As for the lipid ratio indices, the incidence of metabolic syndrome was higher in the fourth quartile than in the first quartile. The area under the ROC curve(AUC) value of AIP was higher at 0.826(95% CI=0.799-0.850) and 0.852(95% CI=0.820-0.881) for men and women, respectively, compared to other lipid ratio indicators, and the optimal cutoff values for both men and women was 0.44(p<0.001). Therefore, the AIP among the lipid ratio indicators was found to be the most useful index for diagnosing metabolic syndrome in the elderly aged 65 years or older.
This study attempted to identify the effects of macroeconomic variables such as the All Industry Production Index, Consumer Price Index, CD Interest Rate, and KOSPI on apartment lease prices divided into nationwide, Seoul, metropolitan, and region, and to present a methodological prediction model of apartment lease prices by region using Long Short Term Memory (LSTM). According to VAR analysis results, the nationwide apartment lease price index and consumer price index in Lag1 and 2 had a significant effect on the nationwide apartment lease price, and likewise, the Seoul apartment lease price index, the consumer price index, and the CD interest rate in Lag1 and 2 affect the apartment lease price in Seoul. In addition, it was confirmed that the wide-area apartment jeonse price index and the consumer price index had a significant effect on Lag1, and the local apartment jeonse price index and the consumer price index had a significant effect on Lag1. As a result of the establishment of the LSTM prediction model, the predictive power was the highest with RMSE 0.008, MAE 0.006, and R-Suared values of 0.999 for the local apartment lease price prediction model. In the future, it is expected that more meaningful results can be obtained by applying an advanced model based on deep learning, including major policy variables
Journal of the Korean Applied Science and Technology
/
v.40
no.2
/
pp.199-209
/
2023
This study is a descriptive research to identify the factors that influence blood donation intentions of the middle-aged firefighters and prison officer based on Ajzen's (1991) planned behavior theory. The subjects of the study were 223 middle-aged firefighters and prison officer at a fire station and prison located in G City and District B. The Data were analyzed by descriptive statistics and t-test, one-way ANOVA, Pearson's correlation coefficient, Turkey, and multiple regression with the SPSS 21.0 program. There were statistically significant differences in blood donation intention according to the blood donation experience, attempted blood donation within a year, participate plan in blood donation within 3 months. The blood donation intention of middle aged showed significant positive correlations with attitude, subjective norms, and perceived behavioral control towards blood donation. Multiple regression analysis for blood donation intention revealed that the significant predictors were participate plan in blood donation within 3 months, perceived behavior control, subjective norms, attitude towards blood donation, and attempted blood donation within a year. These factors explained 69% of the variance. In order to enhance the middle aged's intention to blood donation, we need a program that can improve middle aged's attitude, subjective norms, perceived behavior control.
Purpose: To assess the chronological changes of disease-related kyphosis after chemotherapy alone. Materials and Methods: A total of 101 children aged 2 to 15 years with spinal tuberculosis, accompanied by various stages of disease processes were enrolled for analysis. By utilizing the images in them, the growth plate condition and chronological changes of kyphosis after chemotherapy were analyzed at two points in time; the first assessment was at post-chemotherapy one-year and second at the final discharge. Results: Complete disc destruction in the cervical, dorsal and lumbosacral spines was observed in 2 out of 40 children (5.0%), 8 out of 30 children (26.7%), and 6 out of 31 children (19.4%), respectively. In those cases, the residual kyphosis inevitably developed. In the remaining children, the discs were intact or partially damaged. Among the 101 children kyphotic deformity was maintained without change in 20 children (19.8%). Kyphosis decreased in 14 children (13.9%), while it increased in 67 children (66.3%) with non-recoverably damaged growth plate. Conclusion: Although it is tentatively possible to predict the deformity progress or non-progress and spontaneous correction at the time of the initial treatment, its predictive accuracy is low. Therefore, assessment of the chronological changes should be performed at the end of chemotherapy. In children with progressive curve change, assessment of deformity should be continued until maturity.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.