• 제목/요약/키워드: prediction technique

검색결과 2,074건 처리시간 0.025초

잔류강도 저하모델의 파라미터결정법에 따른 피로수명예측 (The Prediction of Fatigue Life According to the Determination of the Parameter in Residual Strength Degradation Model)

  • 김도식;김정규
    • 대한기계학회논문집
    • /
    • 제18권8호
    • /
    • pp.2053-2061
    • /
    • 1994
  • The static and fatigue tensile tests have been conduted to predict the fatigue life of 8-harness satin woven and plain woven carbon/epoxy composite plates containing a circular hole. A fatigue residual strength degradation model, based on the assumption that the residual strength for unnotched specimen decreases monotonically, has been applied to predict statistically the fatigue life of materials used in this study. To determine the parameters(c, b and K) of the residual strength degradation model, the minimization technique and the maximum likelihood method are used. Agreement of the converted ultimate strength by using the minimization technique with the static ultimate strength is reasonably good. Therefore, the minimization technique is more adjustable in the determination of the parameter and the prediction of the fatigue life than the maximum likelihood method.

저전송률 코드여기 선형 예측 부호화기를 위한 선택적 대역 하모닉 모델 기반 여기신호 개선 알고리즘 (Excitation Enhancement Based on a Selective-Band Harmonic Model for Low-Bit-Rate Code-Excited Linear Prediction Coders)

  • 이미숙;김홍국;최승호;김도영
    • 음성과학
    • /
    • 제11권2호
    • /
    • pp.259-269
    • /
    • 2004
  • In this paper, we propose a new excitation enhancement technique to improve the speech quality of low bit-rate code-excited linear prediction (CELP) coders. The proposed technique is based on a harmonic model and it is employed only in the decoding process of speech coders without any additional bits. We develop the procedure of harmonic model parameter estimation and harmonic generation, and apply this technique to a current state-of-the-art low bit rate speech coder, ITU-T G.729 Annex D. Also, its performance is measured by using the ITU-T P.862 PESQ score and compared to those of the phase dispersion filter and the long-term postfilter applied to the decoded excitation. It is shown that the proposed excitation enhancement technique can improve the quality of decoded speech and provide better quality for male speech than other techniques.

  • PDF

일반 역산 기법을 활용한 한국 지표 관측소 부지 효과 평가 (Korean Seismic Station Site Effect Estimation Using Generalized Inversion Technique)

  • 지현우;한상환
    • 한국지진공학회논문집
    • /
    • 제27권2호
    • /
    • pp.111-118
    • /
    • 2023
  • The 2017 Pohang earthquake afflicted more significant economic losses than the 2016 Gyeongju earthquake, even if these earthquakes had a similar moment magnitude. This phenomenon could be due to local site conditions that amplify ground motions. Local site effects could be estimated from methods using the horizontal-to-vertical spectral ratio, standard spectral ratio, and the generalized inversion technique. Since the generalized inversion method could estimate the site effect effectively, this study modeled the site effects in the Korean peninsula using the generalized inversion technique and the Fourier amplitude spectrum of ground motions. To validate the method, the site effects estimated for seismic stations were tested using recorded ground motions, and a ground motion prediction equation was developed without considering site effects.

LSTM 기반 멀티스텝 트래픽 예측 기법 평가 (Accessing LSTM-based multi-step traffic prediction methods)

  • 염성웅;김형태;콜레카르 산자이 시바니;김경백
    • KNOM Review
    • /
    • 제24권2호
    • /
    • pp.13-23
    • /
    • 2021
  • 최근 IoT 기기들의 활성화에 의해 네트워크가 복잡해짐에 따라, 네트워크의 혼잡을 예측하고 미리 대비하기 위해 단기 트래픽 예측을 넘어 장기 트래픽 예측 연구가 활성화되고 있다. 단기 트래픽 예측 결과를 입력으로 재사용하는 재귀 전략은 멀티 스텝 트래픽 예측으로 확장되었지만, 재귀 단계가 진행될수록 오류가 축적되어 예측 성능 저하를 일으킨다. 이 논문에서는 다중 출력 전략을 사용한 LSTM 기반 멀티스텝 트래픽 예측 기법을 소개하고그 성능을 평가한다. 실제 DNS 요청 트래픽을 기반으로 실험한 결과, 제안된 LSTM기반 다중출력 전략 기법은 재귀 전략 기법에 비해 비정상성 트래픽에 대한 트래픽 예측 성능의 MAPE를 약 6% 줄일 수 있음을 확인하였다.

의사결정나무모형을 이용한 급경사지재해 예측프로그램 개발 및 적용 (Development and its APPLIcation of Computer Program for Slope Hazards Prediction using Decision Tree Model)

  • 송영석;조용찬;서용석;안상로
    • 대한토목학회논문집
    • /
    • 제29권2C호
    • /
    • pp.59-69
    • /
    • 2009
  • 본 연구에서는 화강암, 편마암 등 결정질암 지역에서의 급경사지재해 발생지역 및 미발생지역에 대한 현장조사자료 및 토질시험자료를 토대로 의사결정나무모형을 이용한 급경사지재해 예측모델을 개발하였다. 선정된 급경사지재해 예측모델의 분리기준은 최상위부터 사면경사, 투수계수 및 간극비로 선정되었다. 그리고 이를 토대로 GIS기법을 이용한 국가 주요시설물 주변 급경사지 재해 예측프로그램 SHAPP ver 1.0을 개발하였다. 개발된 예측모델 및 예측프로그램을 검증하기 위하여 강릉시 주문진읍 일대의 현장조사결과와 대상현장에 대한 예측결과를 비교 검토하였다. 검토결과 실제 급경사지 재해가 발생된 구간과 급경사지재해 예측구간이 유사하게 일치하고 있는 것으로 나타났다. 추후 지속적인 연구를 통하여 급경사지재해 예측 결과에 대한 정확도를 높이고, 이를 실용화하여 범용적으로 사용이 가능하도록 할 예정이다.

Survey on Nucleotide Encoding Techniques and SVM Kernel Design for Human Splice Site Prediction

  • Bari, A.T.M. Golam;Reaz, Mst. Rokeya;Choi, Ho-Jin;Jeong, Byeong-Soo
    • Interdisciplinary Bio Central
    • /
    • 제4권4호
    • /
    • pp.14.1-14.6
    • /
    • 2012
  • Splice site prediction in DNA sequence is a basic search problem for finding exon/intron and intron/exon boundaries. Removing introns and then joining the exons together forms the mRNA sequence. These sequences are the input of the translation process. It is a necessary step in the central dogma of molecular biology. The main task of splice site prediction is to find out the exact GT and AG ended sequences. Then it identifies the true and false GT and AG ended sequences among those candidate sequences. In this paper, we survey research works on splice site prediction based on support vector machine (SVM). The basic difference between these research works is nucleotide encoding technique and SVM kernel selection. Some methods encode the DNA sequence in a sparse way whereas others encode in a probabilistic manner. The encoded sequences serve as input of SVM. The task of SVM is to classify them using its learning model. The accuracy of classification largely depends on the proper kernel selection for sequence data as well as a selection of kernel parameter. We observe each encoding technique and classify them according to their similarity. Then we discuss about kernel and their parameter selection. Our survey paper provides a basic understanding of encoding approaches and proper kernel selection of SVM for splice site prediction.

AWS 지점별 기상데이타를 이용한 진화적 회귀분석 기반의 단기 풍속 예보 보정 기법 (Evolutionary Nonlinear Regression Based Compensation Technique for Short-range Prediction of Wind Speed using Automatic Weather Station)

  • 현병용;이용희;서기성
    • 전기학회논문지
    • /
    • 제64권1호
    • /
    • pp.107-112
    • /
    • 2015
  • This paper introduces an evolutionary nonlinear regression based compensation technique for the short-range prediction of wind speed using AWS(Automatic Weather Station) data. Development of an efficient MOS(Model Output Statistics) is necessary to correct systematic errors of the model, but a linear regression based MOS is hard to manage an irregular nature of weather prediction. In order to solve the problem, a nonlinear and symbolic regression method using GP(Genetic Programming) is suggested for a development of MOS wind forecast guidance. Also FCM(Fuzzy C-Means) clustering is adopted to mitigate bias of wind speed data. The purpose of this study is to evaluate the accuracy of the estimation by a GP based nonlinear MOS for 3 days prediction of wind speed in South Korean regions. This method is then compared to the UM model and has shown superior results. Data for 2007-2009, 2011 is used for training, and 2012 is used for testing.

A New Resonance Prediction Method of Fabry-Perot Cavity (FPC) Antennas Enclosed with Metallic Side Walls

  • Kim, Dong-Ho;Yeo, Jun-Ho
    • Journal of electromagnetic engineering and science
    • /
    • 제11권3호
    • /
    • pp.220-226
    • /
    • 2011
  • We have proposed a new method to accurately predict the resonance of Fabry-Perot Cavity (FPC) antennas enclosed with conducting side walls. When lateral directions of an FPC antenna are not blocked with metallic walls, the conventional technique is accurate enough to predict the resonance of the FPC antenna. However, when the FPC antenna has side walls, especially for case with only a short distance between the walls, the conventional prediction method yields an inaccurate result, inevitably requiring a tedious, time-consuming tuning process to determine the correct resonant height to provide the maximum antenna gain in a target frequency band using three-dimensional full-wave computer simulations. To solve that problem, we have proposed a new resonance prediction method to provide a more accurate resonant height calculation of FPC antennas by using the well-known resonance behavior of a rectangular resonant cavity. For a more physically insightful explanation of the new prediction formula, we have reinvestigated our proposal using a wave propagation characteristic in a hollow rectangular waveguide, which clearly confirms our approach. By applying the proposed technique to an FPC antenna covered with a partially reflecting superstrate consisting of continuously tapered meander loops, we have proved that our method is very accurate and readily applicable to various types of FPC antennas with lateral walls. Experimental result confirms the validness of our approach.

An Ensemble Cascading Extremely Randomized Trees Framework for Short-Term Traffic Flow Prediction

  • Zhang, Fan;Bai, Jing;Li, Xiaoyu;Pei, Changxing;Havyarimana, Vincent
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권4호
    • /
    • pp.1975-1988
    • /
    • 2019
  • Short-term traffic flow prediction plays an important role in intelligent transportation systems (ITS) in areas such as transportation management, traffic control and guidance. For short-term traffic flow regression predictions, the main challenge stems from the non-stationary property of traffic flow data. In this paper, we design an ensemble cascading prediction framework based on extremely randomized trees (extra-trees) using a boosting technique called EET to predict the short-term traffic flow under non-stationary environments. Extra-trees is a tree-based ensemble method. It essentially consists of strongly randomizing both the attribute and cut-point choices while splitting a tree node. This mechanism reduces the variance of the model and is, therefore, more suitable for traffic flow regression prediction in non-stationary environments. Moreover, the extra-trees algorithm uses boosting ensemble technique averaging to improve the predictive accuracy and control overfitting. To the best of our knowledge, this is the first time that extra-trees have been used as fundamental building blocks in boosting committee machines. The proposed approach involves predicting 5 min in advance using real-time traffic flow data in the context of inherently considering temporal and spatial correlations. Experiments demonstrate that the proposed method achieves higher accuracy and lower variance and computational complexity when compared to the existing methods.

Enhancing Heart Disease Prediction Accuracy through Soft Voting Ensemble Techniques

  • Byung-Joo Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권3호
    • /
    • pp.290-297
    • /
    • 2024
  • We investigate the efficacy of ensemble learning methods, specifically the soft voting technique, for enhancing heart disease prediction accuracy. Our study uniquely combines Logistic Regression, SVM with RBF Kernel, and Random Forest models in a soft voting ensemble to improve predictive performance. We demonstrate that this approach outperforms individual models in diagnosing heart disease. Our research contributes to the field by applying a well-curated dataset with normalization and optimization techniques, conducting a comprehensive comparative analysis of different machine learning models, and showcasing the superior performance of the soft voting ensemble in medical diagnosis. This multifaceted approach allows us to provide a thorough evaluation of the soft voting ensemble's effectiveness in the context of heart disease prediction. We evaluate our models based on accuracy, precision, recall, F1 score, and Area Under the ROC Curve (AUC). Our results indicate that the soft voting ensemble technique achieves higher accuracy and robustness in heart disease prediction compared to individual classifiers. This study advances the application of machine learning in medical diagnostics, offering a novel approach to improve heart disease prediction. Our findings have significant implications for early detection and management of heart disease, potentially contributing to better patient outcomes and more efficient healthcare resource allocation.