• Title/Summary/Keyword: prediction coefficients

Search Result 918, Processing Time 0.025 seconds

Multispectral Image Compression Using Classified Interband Prediction and Vector Quantization in Wavelet domain (웨이브릿 영역에서의 영역별 대역간 예측과 벡터 양자화를 이용한 다분광 화상 데이타의 압축)

  • 반성원;권성근;이종원;박경남;김영춘;장종국;이건일
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1B
    • /
    • pp.120-127
    • /
    • 2000
  • In this paper, we propose multispectral image compression using classified interband prediction and vector quantization in wavelet domain. This method classifies each region considering reflection characteristics of each band in image data. In wavelet domain, we perform the classified intraband VQ to remove intraband redundancy for a reference band image that has the lowest spatial variance and the best correlation with other band. And in wavelet domain, we perform the classifled interband prediction to remove interband redundancy for the remaining bands. Then error wavelet coefficients between original image and predicted image are intraband vector quantized to reduce prediction error. Experiments on remotely sensed satellite image show that coding efficiency of theproposed method is better than that of the conventional method.

  • PDF

Development of 12-month Ensemble Prediction System Using PNU CGCM V1.1 (PNU CGCM V1.1을 이용한 12개월 앙상블 예측 시스템의 개발)

  • Ahn, Joong-Bae;Lee, Su-Bong;Ryoo, Sang-Boom
    • Atmosphere
    • /
    • v.22 no.4
    • /
    • pp.455-464
    • /
    • 2012
  • This study investigates a 12 month-lead predictability of PNU Coupled General Circulation Model (CGCM) V1.1 hindcast, for which an oceanic data assimilated initialization is used to generate ocean initial condition. The CGCM, a participant model of APEC Climate Center (APCC) long-lead multi-model ensemble system, has been initialized at each and every month and performed 12-month-lead hindcast for each month during 1980 to 2011. The 12-month-lead hindcast consisted of 2-5 ensembles and this study verified the ensemble averaged hindcast. As for the sea-surface temperature concerns, it remained high level of confidence especially over the tropical Pacific and the mid-latitude central Pacific with slight declining of temporal correlation coefficients (TCC) as lead month increased. The CGCM revealed trustworthy ENSO prediction skills in most of hindcasts, in particular. For atmospheric variables, like air temperature, precipitation, and geopotential height at 500hPa, reliable prediction results have been shown during entire lead time in most of domain, particularly over the equatorial region. Though the TCCs of hindcasted precipitation are lower than other variables, a skillful precipitation forecasts is also shown over highly variable regions such as ITCZ. This study also revealed that there are seasonal and regional dependencies on predictability for each variable and lead.

A Very Fast 2${\times}$2 Fractal Coding By Spatial Prediction (공간예측에 의한 고속 2${\times}$2 프랙탈 영상압축)

  • Wee Young Cheul
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.11
    • /
    • pp.611-616
    • /
    • 2004
  • In this paper, we introduce a very fast and efficient fractal coding scheme by using the spatial prediction on ultra-small atomic range blocks. This new approach drastically speeds up the encoding while improving the fidelity and the compression ratio. The affine transformation coefficients between adjacent range blocks induced by this method often have good correlations thereby the compression ratios can further be improved. The proposed method leads to improved rate-distortion performance compared to previously reported pure fractals, and it is faster than other state-of-the-art fractal coding methods.

Powering Performance Prediction of Low-Speed Full Ships and Container Carriers Using Statistical Approach (통계적 접근 방법을 이용한 저속비대선 및 컨테이너선의 동력 성능 추정)

  • Kim, Yoo-Chul;Kim, Gun-Do;Kim, Myung-Soo;Hwang, Seung-Hyun;Kim, Kwang-Soo;Yeon, Sung-Mo;Lee, Young-Yeon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.4
    • /
    • pp.234-242
    • /
    • 2021
  • In this study, we introduce the prediction of brake power for low-speed full ships and container carriers using the linear regression and a machine learning approach. The residual resistance coefficient, wake fraction coefficient, and thrust deduction factor are predicted by regression models using the main dimensions of ship and propeller. The brake power of a ship can be calculated by these coefficients according to the 1978 ITTC performance prediction method. The mean absolute error of the predicted power was under 7%. As a result of several validation cases, it was confirmed that the machine learning model showed slightly better results than linear regression.

Rapid Nondestructive Prediction of Multiple Quality Attributes for Different Commercial Meat Cut Types Using Optical System

  • An, Jiangying;Li, Yanlei;Zhang, Chunzhi;Zhang, Dequan
    • Food Science of Animal Resources
    • /
    • v.42 no.4
    • /
    • pp.655-671
    • /
    • 2022
  • There are differences of spectral characteristics between different types of meat cut, which means the model established using only one type of meat cut for meat quality prediction is not suitable for other meat cut types. A novel portable visible and near-infrared (Vis/NIR) optical system was used to simultaneously predict multiple quality indicators for different commercial meat cut types (silverside, back strap, oyster, fillet, thick flank, and tenderloin) from Small-tailed Han sheep. The correlation coefficients of the calibration set (Rc) and prediction set (Rp) of the optimal prediction models were 0.82 and 0.81 for pH, 0.88 and 0.84 for L*, 0.83 and 0.78 for a*, 0.83 and 0.82 for b*, 0.94 and 0.86 for cooking loss, 0.90 and 0.88 for shear force, 0.84 and 0.83 for protein, 0.93 and 0.83 for fat, 0.92 and 0.87 for moisture contents, respectively. This study demonstrates that Vis/NIR spectroscopy is a promising tool to achieve the predictions of multiple quality parameters for different commercial meat cut types.

DIVERGENT SELECTION FOR POSTWEANING FEED CONVERSION IN ANGUS BEEF CATTLE V. PREDICTION OF FEED CONVERSION USING WEIGHTS AND LINEAR BODY MEASUREMENTS

  • Park, N.H.;Bishop, M.D.;Davis, M.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.3
    • /
    • pp.441-448
    • /
    • 1994
  • Postweaning performance data were obtained on 187 group fed purebred Angus calves from 12 selected sires (six high and six low feed conversion sires) in 1985 and 1986. The objective of this portion of the study was to develop prediction equations for feed conversion from a stepwise regression analysis. Variables measured were on-test weight (ONTSTWT), on-test age (ONTSTAG), five weights by 28-d periods, seven linear body measurements: heart girth (HG), hip height (HH), head width (HDW), head length (HDL), muzzle circumference (MC), length between hooks and pins (HOPIN) and length between shoulder and hooks (SHHO), and backfat thickness (BF). Stepwise regressions for maintenance adjusted feed conversion (ADJFC) and unadjusted feed conversion (UNADFC) over the first 140 d of the test, and total feed conversion (FC) until progeny reached 8.89 mm of back fat were obtained separately by conversion groups and sexes and for combined feed conversion groups and sexes. In general, weights were more important than linear body measurements in prediction of feed utilization. To some extent this was expected as weight is related directly to gain which is a component of feed conversion. Weight at 112 d was the most important variable in prediction of feed conversion when data from both feed conversion groups and sexes were combined. Weights at 84 and 140 d were important variables in prediction of UNADFC and FC, respectively, of bulls. ONTSTWT and weight at 140 d had the highest standardized partial regression coefficients for UNADFC and ADJFC, respectively, of heifers. Results indicated that linear measurements, such as MC, HDL and HOPIN, are useful in prediction of feed conversion when feed in takes are unavailable.

Prediction of Hydrodynamic Coefficients for Underwater Vehicle Using Rotating Arm Test (강제선회시험을 이용한 수중운동체의 유체력 미계수 추정)

  • Jeong, Jae-Hun;Han, Ji-Hun;Ok, Jihun;Kim, Hyeong-Dong;Kim, Dong-Hun;Shin, Yong-Ku;Lee, Seung-Keon
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.25-31
    • /
    • 2016
  • In this study, hydrodynamic coefficients were obtained from a Rotating Arm (RA) test, which is one of the captive model tests used to provide accurate coefficients in the control motion equation of an underwater vehicle. The RA test was carried out at the RA facility of ADD (Agency for Defense Development), and the forces and moments acting on the underwater vehicle were measured using a six-axis waterproof gage. A multiple regression analysis was used in the analysis of the measured data. The experimental results were also verified by comparison with the theoretical values of the previous linear coefficients. In addition, the stability indices in the horizontal plane were calculated using the linear and nonlinear coefficients, and the dynamic stability of the underwater vehicle was estimated to have a good dynamic performance with a depth ratio of 6.0.

Reflection and Transmission of Regular Waves by Multiple-Row Curtainwall-Pile Breakwaters (다열 커튼월-파일 방파제에 의한 규칙파의 반사 및 투과)

  • Suh, Kyung-Duck;Ji, Chang-Hwan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.2
    • /
    • pp.97-111
    • /
    • 2006
  • Using the eigenfunction expansion method, a mathematical model has been developed to calculate the reflection and transmission of regular waves from a multiple-row curtainwall-pile breakwater. In addition, hydraulic model experiments have been conducted with different values of porosities between the piles, drafts of the curtain walls, and distances between the rows of the breakwater. It is found that the reflection and transmission coefficients decrease and increase, respectively, with decreasing relative water depth, but they bounce to increase and decrease, respectively, as the relative water depth decreases further. When either the porosity between the piles or the draft of the curtain wall is changed with other parameters fixed, the relative magnitudes of the reflection and transmission coefficients have been changed, but the general trend remained the same. When the wavelength is the same as the distance between the rows of the breakwater, a rapid change was observed for the reflection and transmission coefficients. A good agreement between the measurement and prediction was also founded for three-row breakwaters.

Estimation of Soil Moisture Content in Corn Field Using Microwave Scatterometer Data

  • Kim, Yihyun;Hong, Sukyoung;Lee, Kyoungdo;Na, Sangil;Jung, Gunho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.4
    • /
    • pp.235-241
    • /
    • 2014
  • A ground-based microwave scatterometer has an advantage for monitoring soil moisture content using multi-polarization, multi-frequencies and various incidence angles. In this paper, ground-based multi-frequency (L-, C-, and X-band) polarimetric scatterometer system capable of making observations every 10 min was used to monitor the soil moisture conditions in a corn field over an entire growth cycle. Measurements of volumetric soil moisture were obtained and their relationships to the backscatter observations were examined. Time series of soil moisture content was not corresponding with backscattering coefficient pattern over the whole growth stage, although it increased until early July (Day Of Year, DOY 160). We examined the relationship between the backscattering coefficients from each band and soil moisture content of the field. Backscattering coefficients for all bands were not correlated with soil moisture content when considered over the entire stage ($r{\leq}0.48$). However, L-band Horizontal transmit and Horizontal receive polarization (HH) had a good correlation with soil moisture ($r=0.85^{**}$) when LAI was lower than 2. Prediction equations for soil moisture were developed using the L-HH data. Relation between L-HH and soil moisture shows linear pattern and related with soil moisture content ($R^2=0.77$). Results from this study show that backscattering coefficients of microwave scatterometer appear to be effective to estimate soil moisture content in the field level.

Comparative Studies of Heat Transfer Coefficients for Rocket Nozzle (로켓 노즐의 열전달계수 비교 연구)

  • Hahm, Hee-Cheol;Kang, Yoon-Goo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.2
    • /
    • pp.42-50
    • /
    • 2012
  • The goal of heat transfer studies is the accurate prediction of temperature and heat flux distribution on material boundaries. To this purpose, general-purpose computational fluid dynamics(CFD) code is used : FLUENT. Mass fluxes and pressure ratio are calculated for two types of nozzle. The comparative studies reveal that the computational results are in agreement with the experimental data. Also, heat transfer coefficients from FLUENT for one type of nozzle are very similar and agree well with the experimental data in the diverging part of the nozzle, but the calculated results are large in the converging part. The heat transfer coefficients from Bartz equation are over-predicted. We can consider various reasons for these differences, i.e., laminarization by the highly accelerated flow in the nozzle, turbulent flow model and grid generation.